Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, paper published in the English version journal (Mi mzm12583)  

Papers published in the English version of the journal

Palindromic Sequences of the Markov Spectrum

M. van Son

University of Liverpool, Liverpool, L69 3BX United Kingdom
Abstract: We study the periods of Markov sequences, which are derived from the continued fraction expression of elements in the Markov spectrum. This spectrum is the set of minimal values of indefinite binary quadratic forms that are specially normalised. We show that the periods of these sequences are palindromic after a number of circular shifts, the number of shifts being given by Stern's diatomic sequence.
Keywords: Markov sequence, Stern's diatomic series, Stern's diatomic sequence, palindromic sequence, evenly palindromic, Christoffel words.
Received: 02.01.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 457–467
DOI: https://doi.org/10.1134/S0001434619090153
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. van Son, “Palindromic Sequences of the Markov Spectrum”, Math. Notes, 106:3 (2019), 457–467
Citation in format AMSBIB
\Bibitem{Van19}
\by M.~van Son
\paper Palindromic Sequences of the Markov Spectrum
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 457--467
\mathnet{http://mi.mathnet.ru/mzm12583}
\crossref{https://doi.org/10.1134/S0001434619090153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017560}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300015}
\elib{https://elibrary.ru/item.asp?id=42227156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074167686}
Linking options:
  • https://www.mathnet.ru/eng/mzm12583
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024