Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 2, Pages 190–199
DOI: https://doi.org/10.4213/mzm12580
(Mi mzm12580)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Dominated Extension of Linear Operators

A. A. Gelievaa, Z. A. Kusraevabc

a Vladikavkaz Scientific Centre of the Russian Academy of Sciences
b Regional Scientific and Educational Mathematical Center of Southern Federal University, Rostov-on-Don
c Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
Full-text PDF (458 kB) Citations (1)
References:
Abstract: An ordered topological vector space has the countable dominated extension property if any linear operator ranging in this space, defined on a subspace of a separable metrizable topological vector space, and dominated there by a continuous sublinear operator admits extension to the entire space with preservation of linearity and domination. Our main result is that the strong $\sigma$-interpolation property is a necessary and sufficient condition for a sequentially complete topological vector space ordered by a closed normal reproducing cone to have the countable dominated extension property. Moreover, this fact can be proved in Zermelo–Fraenkel set theory with the axiom of countable choice.
Keywords: ordered topological vector space, reproducing cone, normal cone, separability, $\sigma$-interpolation property, linear operator, dominated extension, axiom of countable choice.
Received: 06.10.2019
Revised: 18.12.2019
English version:
Mathematical Notes, 2020, Volume 108, Issue 2, Pages 171–178
DOI: https://doi.org/10.1134/S0001434620070184
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. A. Gelieva, Z. A. Kusraeva, “On Dominated Extension of Linear Operators”, Mat. Zametki, 108:2 (2020), 190–199; Math. Notes, 108:2 (2020), 171–178
Citation in format AMSBIB
\Bibitem{GelKus20}
\by A.~A.~Gelieva, Z.~A.~Kusraeva
\paper On Dominated Extension of Linear Operators
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 2
\pages 190--199
\mathnet{http://mi.mathnet.ru/mzm12580}
\crossref{https://doi.org/10.4213/mzm12580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133410}
\elib{https://elibrary.ru/item.asp?id=45385396}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 2
\pages 171--178
\crossref{https://doi.org/10.1134/S0001434620070184}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089006845}
Linking options:
  • https://www.mathnet.ru/eng/mzm12580
  • https://doi.org/10.4213/mzm12580
  • https://www.mathnet.ru/eng/mzm/v108/i2/p190
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024