|
This article is cited in 1 scientific paper (total in 1 paper)
On the Fourier–Walsh Transform of Functions from Dyadic Dini–Lipschitz Classes on the Semiaxis
S. S. Platonov Petrozavodsk State University
Abstract:
Let $f(x)$ be a function belonging to the Lebesgue class $L^p({\mathbb R}_+)$ on the semiaxis ${\mathbb R}_+=[0,+\infty)$, $1\le p\le 2$, and let $\widehat{f}$ be the Fourier–Walsh transform of the function $f$. In this paper, we give the solution of the following problem: if the function $f$ belongs to the dyadic Dini–Lipschitz class $\operatorname{DLip}_\oplus(\alpha,\beta,p;{\mathbb R}_+)$, $\alpha>0$, $\beta\in{\mathbb R}$, then for what values of $r$ can we guarantee that $\widehat{f}$ belongs to $L^r({\mathbb R}_+)$? The result obtained is an analog of the classical Titchmarsh theorem on the Fourier transform of functions from Lipschitz classes on ${\mathbb R}$.
Keywords:
dyadic harmonic analysis, Dini–Lipschitz classes, Fourier–Walsh transform.
Received: 26.09.2019
Citation:
S. S. Platonov, “On the Fourier–Walsh Transform of Functions from Dyadic Dini–Lipschitz Classes on the Semiaxis”, Mat. Zametki, 108:2 (2020), 236–251; Math. Notes, 108:2 (2020), 229–242
Linking options:
https://www.mathnet.ru/eng/mzm12575https://doi.org/10.4213/mzm12575 https://www.mathnet.ru/eng/mzm/v108/i2/p236
|
Statistics & downloads: |
Abstract page: | 199 | Full-text PDF : | 47 | References: | 31 | First page: | 4 |
|