Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 1, Pages 130–136
DOI: https://doi.org/10.4213/mzm12573
(Mi mzm12573)
 

On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings

T. A. Pushkovaa, A. M. Sebel'dinb

a Nizhny Novgorod State University of Architecture and Civil Engineering
b Nizhnii Novgorod
References:
Abstract: Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a $_CH $-class (a $_CEH$-class) if, for any groups $A$ and $B$ in the class $X$, the isomorphism of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$ (the isomorphism of the endomorphism rings $E(A)$ and $E(B)$ and of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$) implies the isomorphism of the groups $A$ and $B$. In the paper, we study conditions that must be satisfied by a vector group $C$ for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CH$ class (Theorem 1), and also, for some $C$ in the class of vector groups, for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CEH$-class (Theorem 2).
Keywords: homogeneously decomposable torsion-free Abelian group, definability of Abelian groups, group of homomorphisms, endomorphism ring.
Received: 24.09.2019
Revised: 08.01.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 1, Pages 117–122
DOI: https://doi.org/10.1134/S0001434620070111
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: T. A. Pushkova, A. M. Sebel'din, “On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings”, Mat. Zametki, 108:1 (2020), 130–136; Math. Notes, 108:1 (2020), 117–122
Citation in format AMSBIB
\Bibitem{PusSeb20}
\by T.~A.~Pushkova, A.~M.~Sebel'din
\paper On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 1
\pages 130--136
\mathnet{http://mi.mathnet.ru/mzm12573}
\crossref{https://doi.org/10.4213/mzm12573}
\elib{https://elibrary.ru/item.asp?id=46664176}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 1
\pages 117--122
\crossref{https://doi.org/10.1134/S0001434620070111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300011}
\elib{https://elibrary.ru/item.asp?id=45412362}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088958487}
Linking options:
  • https://www.mathnet.ru/eng/mzm12573
  • https://doi.org/10.4213/mzm12573
  • https://www.mathnet.ru/eng/mzm/v108/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024