Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, paper published in the English version journal (Mi mzm12566)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Global Bifurcation for Fourth-Order Differential Equations with Periodic Boundary-Value Conditions

Yanqiong Lu, Ruyun Ma, Tianlan Chen

Department of Mathematics, Northwest Normal University, Lanzhou, 730070 China
Citations (1)
Abstract: We establish the global structure of positive solutions of fourth-order periodic boundary-value problems $u''''(t)+Mu(t)=\lambda f(t,u(t))$, $t\in[0,T]$, $u^{k}(0)=u^{(k)}(T)$, $k=0,1,2,3,$ with $M\in\big(0,4({2\pi M_4}/{T})^4\big)$ and $u^{(4)}(t)-Mu(t)+\lambda g(t,u(t))=0$, $t\in[0,T]$, $u^{k}(0)=u^{(k)}(T)$, $k=0,1,2,3,$ with $M\in \big(0,({2\pi M_4}/{T})^4\big)$; here $g, f\in C([0,T]\times[0,\infty),[0,\infty))$, $M$ is constant, and $\lambda>0$ is a real parameter. The main results are based on a global bifurcation theorem.
Keywords: existence, positive periodic solutions, fourth-order periodic boundary-value problem, bifurcation.
Funding agency Grant number
National Natural Science Foundation of China 11801453
11626188
11671322
Gansu Provincial National Science Foundation of China 1606RJYA232
Northwest Normal University NWNU-LKQN-15-16
This work was supported by the National Natural Science Foundation of China (grants nos. 11801453, 11626188, and 11671322), Gansu Provincial National Science Foundation of China (grant no. 1606RJYA232), and by the Northwest Normal University (project NWNU-LKQN-15-16).
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 248–257
DOI: https://doi.org/10.1134/S0001434619070289
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yanqiong Lu, Ruyun Ma, Tianlan Chen, “Global Bifurcation for Fourth-Order Differential Equations with Periodic Boundary-Value Conditions”, Math. Notes, 106:2 (2019), 248–257
Citation in format AMSBIB
\Bibitem{LuRuyTia19}
\by Yanqiong~Lu, Ruyun Ma, Tianlan Chen
\paper Global Bifurcation for Fourth-Order Differential Equations with Periodic Boundary-Value Conditions
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 248--257
\mathnet{http://mi.mathnet.ru/mzm12566}
\crossref{https://doi.org/10.1134/S0001434619070289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985704}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071610669}
Linking options:
  • https://www.mathnet.ru/eng/mzm12566
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:143
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024