Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 4, Pages 549–564
DOI: https://doi.org/10.4213/mzm12552
(Mi mzm12552)
 

Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schlömilch j-Polynomials

L. N. Lyakhov, E. Sanina

Voronezh State University
References:
Abstract: The definition of a $B$-derivative is based on the notion of generalized Poisson shift; this derivative coincides, up to a constant, with the singular Bessel differential operator. We introduce the fractional powers of a $B$-derivative by analogy with fractional Marchaud and Weyl derivatives. We prove statements on the coincidence of these derivatives for the classes of even smooth integrable functions. We obtain analogs of Bernstein's inequality for $B$-derivatives of integer and fractional order in the space of even Schlömilch j-polynomials with sup-norm and $L_p^\gamma$-norm (the Lebesgue norm with power weight $x^\gamma$, $\gamma>0$). The resulting estimates are sharp and define the norms of powers of the Bessel operator in the spaces of even Schlömilch j-polynomials.
Keywords: Bessel j-function, generalized Poisson shift, Liouville, Marchaud, and Weyl fractional derivatives, Schlömilch polynomial, Riesz interpolation formula, Bernstein's inequality, Bernstein–Zygmund inequality, operator norm.
Received: 20.11.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 4, Pages 577–590
DOI: https://doi.org/10.1134/S0001434619090268
Bibliographic databases:
Document Type: Article
UDC: 519.216
Language: Russian
Citation: L. N. Lyakhov, E. Sanina, “Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schlömilch j-Polynomials”, Mat. Zametki, 106:4 (2019), 549–564; Math. Notes, 106:4 (2019), 577–590
Citation in format AMSBIB
\Bibitem{LyaSan19}
\by L.~N.~Lyakhov, E.~Sanina
\paper Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schl\"omilch j-Polynomials
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 4
\pages 549--564
\mathnet{http://mi.mathnet.ru/mzm12552}
\crossref{https://doi.org/10.4213/mzm12552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017569}
\elib{https://elibrary.ru/item.asp?id=41709406}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 4
\pages 577--590
\crossref{https://doi.org/10.1134/S0001434619090268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074171973}
Linking options:
  • https://www.mathnet.ru/eng/mzm12552
  • https://doi.org/10.4213/mzm12552
  • https://www.mathnet.ru/eng/mzm/v106/i4/p549
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :81
    References:59
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024