Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 5, Pages 757–763
DOI: https://doi.org/10.4213/mzm12540
(Mi mzm12540)
 

An Algorithm for Recognizing the Spherical Transitivity of an Initial Binary Automaton

T. I. Lipina

Lomonosov Moscow State University
References:
Abstract: An algorithm is presented which determines in a finite number of steps whether an initial finite binary automaton is spherically transitive. Since the class of deterministic functions coincides with the class of functions satisfying the Lipschitz condition with constant 1 on the ring of $p$-adic integers, the algorithm is based on an ergodicity criterion for a deterministic function given by a van der Put series.
Keywords: spherical transitivity, initial automaton, $p$-adic number, van der Put series.
Received: 20.05.2020
Revised: 18.06.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 5, Pages 721–726
DOI: https://doi.org/10.1134/S0001434620110103
Bibliographic databases:
Document Type: Article
UDC: 519.713
Language: Russian
Citation: T. I. Lipina, “An Algorithm for Recognizing the Spherical Transitivity of an Initial Binary Automaton”, Mat. Zametki, 108:5 (2020), 757–763; Math. Notes, 108:5 (2020), 721–726
Citation in format AMSBIB
\Bibitem{Lip20}
\by T.~I.~Lipina
\paper An Algorithm for Recognizing the Spherical Transitivity of an Initial Binary Automaton
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 5
\pages 757--763
\mathnet{http://mi.mathnet.ru/mzm12540}
\crossref{https://doi.org/10.4213/mzm12540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169701}
\elib{https://elibrary.ru/item.asp?id=45089521}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 5
\pages 721--726
\crossref{https://doi.org/10.1134/S0001434620110103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097539001}
Linking options:
  • https://www.mathnet.ru/eng/mzm12540
  • https://doi.org/10.4213/mzm12540
  • https://www.mathnet.ru/eng/mzm/v108/i5/p757
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025