Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 450–456
DOI: https://doi.org/10.4213/mzm12538
(Mi mzm12538)
 

On the Degree of Hilbert Polynomials of Derived Functors

H. Saremia, A. Mafib

a Islamic Azad University, Iran
b University of Kurdistan, Iran
References:
Abstract: Given a $d$-dimensional Cohen–Macaulay local ring $(R,\mathfrak m)$, let $I$ be an $\mathfrak{m}$-primary ideal, and let $J$ be a minimal reduction ideal of $I$. If $M$ is a maximal Cohen–Macaulay $R$-module, then, for $n$ large enough and $1\le i\le d$, the lengths of the modules $\operatorname{Ext}^i_R(R/J,M/I^nM)$ and $\operatorname{Tor}_i^R(R/J,M/I^nM)$ are polynomials of degree $d-1$. It is also shown that
$$ \operatorname{deg}\beta_i^R(M/I^nM) =\operatorname{deg}\mu^i_R(M/I^nM)=d-1, $$
where $\beta_i^R(\,\cdot\,)$ and $\mu^i_R(\,\cdot\,)$ are the $i$th Betti number and the $i$th Bass number, respectively.
Keywords: Hilbert–Samuel polynomial, derived functors.
Received: 26.12.2017
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 423–428
DOI: https://doi.org/10.1134/S0001434619090116
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: H. Saremi, A. Mafi, “On the Degree of Hilbert Polynomials of Derived Functors”, Mat. Zametki, 106:3 (2019), 450–456; Math. Notes, 106:3 (2019), 423–428
Citation in format AMSBIB
\Bibitem{SarMaf19}
\by H.~Saremi, A.~Mafi
\paper On the Degree of Hilbert Polynomials of Derived Functors
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 450--456
\mathnet{http://mi.mathnet.ru/mzm12538}
\crossref{https://doi.org/10.4213/mzm12538}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017559}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 423--428
\crossref{https://doi.org/10.1134/S0001434619090116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074111103}
Linking options:
  • https://www.mathnet.ru/eng/mzm12538
  • https://doi.org/10.4213/mzm12538
  • https://www.mathnet.ru/eng/mzm/v106/i3/p450
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :33
    References:33
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024