Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 6, Pages 855–864
DOI: https://doi.org/10.4213/mzm12512
(Mi mzm12512)
 

This article is cited in 3 scientific papers (total in 3 papers)

On Simple $\mathbb{Z}_2$-Invariant and Corner Function Germs

S. M. Gusein-Zade, A.-M. Ya. Raukh

Lomonosov Moscow State University
Full-text PDF (472 kB) Citations (3)
References:
Abstract: V. I. Arnold has classified simple (i.e., having no moduli for the classification) singularities (function germs), and also simple boundary singularities: function germs invariant with respect to the action $\sigma(x_1;y_1,\dots,y_n)=(-x_1;y_1,\dots,y_n)$ of the group $\mathbb{Z}_2$. In particular, it was shown that a function germ (a boundary singularity germ) is simple if and only if the intersection form (respectively, the restriction of the intersection form to the subspace of anti-invariant cycles) of a germ in $3+4s$ variables stable equivalent to the one under consideration is negative definite and if and only if the (equivariant) monodromy group on the corresponding subspace is finite. We formulate and prove analogs of these statements for function germs invariant with respect to an arbitrary action of the group $\mathbb{Z}_2$, and also for corner singularities.
Keywords: group actions, invariant germs, simple singularities.
Funding agency Grant number
Russian Science Foundation 16-11-10018
This work was supported by the Russian Science Foundation under grant 16-11-10018.
Received: 15.07.2019
Revised: 17.09.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 6, Pages 939–945
DOI: https://doi.org/10.1134/S0001434620050247
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. M. Gusein-Zade, A.-M. Ya. Raukh, “On Simple $\mathbb{Z}_2$-Invariant and Corner Function Germs”, Mat. Zametki, 107:6 (2020), 855–864; Math. Notes, 107:6 (2020), 939–945
Citation in format AMSBIB
\Bibitem{GusRau20}
\by S.~M.~Gusein-Zade, A.-M.~Ya.~Raukh
\paper On Simple
$\mathbb{Z}_2$-Invariant
and Corner Function Germs
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 6
\pages 855--864
\mathnet{http://mi.mathnet.ru/mzm12512}
\crossref{https://doi.org/10.4213/mzm12512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104751}
\elib{https://elibrary.ru/item.asp?id=43294692}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 6
\pages 939--945
\crossref{https://doi.org/10.1134/S0001434620050247}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086791952}
Linking options:
  • https://www.mathnet.ru/eng/mzm12512
  • https://doi.org/10.4213/mzm12512
  • https://www.mathnet.ru/eng/mzm/v107/i6/p855
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024