This article is cited in 3 scientific papers (total in 3 papers)
Mosaic approximations of discrete analogs of Calderón–Zygmund operators
N. É. Mikhailovskii ab a Moscow Institute of Physics and Technology
b Institute of Numerical Mathematics, Russian Academy of Sciences
Abstract:
Asymptotic estimates of the form $\operatorname{mr}A=O(\ln N\cdot\ln^d\varepsilon^{-1})$, where $d$ is the dimension of the initial space, for mosaic ranks of discrete analog of Calderón–Zygmund operators are obtained for various mosaic covers.
Received: 14.03.1996Revised: 17.04.1997
Citation:
N. É. Mikhailovskii, “Mosaic approximations of discrete analogs of Calderón–Zygmund operators”, Mat. Zametki , 63 :1 (1998), 81–94 ; Math. Notes , 63 :1 (1998), 72–83
Linking options:
https://www.mathnet.ru/eng/mzm1250 https://doi.org/10.4213/mzm1250 https://www.mathnet.ru/eng/mzm/v63/i1/p81
1
CITATION
1
Total citation
0
Recent citations
n/a
Field Citation Ratio
n/a
Relative Citation Ratio
2
CITATIONS
2
Total citations
0
Recent citations
n/a
Field Citation Ratio
n/a
Relative Citation Ratio
Statistics & downloads :
Abstract page: 338 Full-text PDF : 174 References: 53 First page: 2