Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 6, Pages 803–816
DOI: https://doi.org/10.4213/mzm12466
(Mi mzm12466)
 

This article is cited in 1 scientific paper (total in 1 paper)

The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

A. V. Aminovaa, M. N. Sabitovab

a Kazan (Volga Region) Federal University
b The City University of New York
Full-text PDF (510 kB) Citations (1)
References:
Abstract: The solution of the Eisenhart equation for pseudo-Riemannian manifolds $(M^n,g)$ of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannian $h$-spaces (i.e., spaces admitting nontrivial solutions $h\ne cg$ of the Eisenhart equation) of all possible types determined by the Segrè characteristic $\chi$ of the bilinear form $h$ are found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in $(M^n,g)$ are given. The curvature $2$-form of a (rigid) $h$-space of type $\chi=\{r_1,\dots,r_k\}$ is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
Keywords: Eisenhart equation, $h$-space, projective motion, curvature.
Funding agency Grant number
National Science Foundation DMS-0901230
This work was supported by the National Science Foundation (NSF) under grant DMS-0901230.
Received: 02.06.2019
Revised: 01.12.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 6, Pages 875–886
DOI: https://doi.org/10.1134/S0001434620050181
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: A. V. Aminova, M. N. Sabitova, “The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds”, Mat. Zametki, 107:6 (2020), 803–816; Math. Notes, 107:6 (2020), 875–886
Citation in format AMSBIB
\Bibitem{AmiSab20}
\by A.~V.~Aminova, M.~N.~Sabitova
\paper The General Solution of the Eisenhart Equation
and Projective Motions of Pseudo-Riemannian Manifolds
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 6
\pages 803--816
\mathnet{http://mi.mathnet.ru/mzm12466}
\crossref{https://doi.org/10.4213/mzm12466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104747}
\elib{https://elibrary.ru/item.asp?id=43295834}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 6
\pages 875--886
\crossref{https://doi.org/10.1134/S0001434620050181}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086785880}
Linking options:
  • https://www.mathnet.ru/eng/mzm12466
  • https://doi.org/10.4213/mzm12466
  • https://www.mathnet.ru/eng/mzm/v107/i6/p803
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :69
    References:50
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024