Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 2, Pages 200–214
DOI: https://doi.org/10.4213/mzm12463
(Mi mzm12463)
 

This article is cited in 1 scientific paper (total in 1 paper)

2-Colorings of Hypergraphs with Large Girth

Yu. A. Demidovich

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Full-text PDF (531 kB) Citations (1)
References:
Abstract: A hypergraph $H=(V,E)$ has property $B_k$ if there exists a 2-coloring of the set $V$ such that each edge contains at least $k$ vertices of each color. We let $m_{k,g}(n)$ and $m_{k,b}(n)$, respectively, denote the least number of edges of an $n$-homogeneous hypergraph without property $B_k$ which contains either no cycles of length at least $g$ or no two edges intersecting in more than $b$ vertices. In the paper, upper bounds for these quantities are given. As a consequence, we obtain results for $m^{*}_k(n)$, i.e., for the least number of edges of an $n$-homogeneous simple hypergraph without property $B_k$. Let $\Delta(H)$ be the maximal degree of vertices of a hypergraph $H$. By $\Delta_k(n,g)$ we denote the minimal degree $\Delta$ such that there exists an $n$-homogeneous hypergraph $H$ with maximal degree $\Delta$ and girth at least $g$ but without property $B_k$. In the paper, an upper bound for $\Delta_k(n,g)$ is obtained.
Keywords: hypergraphs, girth, property $B$, simple hypergraphs.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00355
Ministry of Education and Science of the Russian Federation НШ-2540.2020.1
This work was supported by the Russian Foundation for Basic Research under grant 18-01-00355 and by the program “Leading Scientific Schools” (project no. NSh-2540.2020.1).
Received: 16.06.2019
Revised: 11.12.2019
English version:
Mathematical Notes, 2020, Volume 108, Issue 2, Pages 188–200
DOI: https://doi.org/10.1134/S0001434620070202
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: Yu. A. Demidovich, “2-Colorings of Hypergraphs with Large Girth”, Mat. Zametki, 108:2 (2020), 200–214; Math. Notes, 108:2 (2020), 188–200
Citation in format AMSBIB
\Bibitem{Dem20}
\by Yu.~A.~Demidovich
\paper 2-Colorings of Hypergraphs with Large Girth
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 2
\pages 200--214
\mathnet{http://mi.mathnet.ru/mzm12463}
\crossref{https://doi.org/10.4213/mzm12463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133411}
\elib{https://elibrary.ru/item.asp?id=45389277}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 2
\pages 188--200
\crossref{https://doi.org/10.1134/S0001434620070202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089028773}
Linking options:
  • https://www.mathnet.ru/eng/mzm12463
  • https://doi.org/10.4213/mzm12463
  • https://www.mathnet.ru/eng/mzm/v108/i2/p200
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :52
    References:42
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024