Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 5, Pages 669–678
DOI: https://doi.org/10.4213/mzm12446
(Mi mzm12446)
 

This article is cited in 2 scientific papers (total in 2 papers)

Riesz Potential with Integrable Density in Hölder-Variable Spaces

B. G. Vakulov, Yu. E. Drobotov

Southern Federal University, Rostov-on-Don
Full-text PDF (523 kB) Citations (2)
References:
Abstract: Boundedness conditions for spherical and spatial variable-order Riesz potential type operators with integrable density in variable-exponent Hölder spaces are proved.
Keywords: Riesz potential, variable-exponent Hölder space, variable-order Riesz potential type operator.
Funding agency Grant number
Southern Federal University ВнГр-07/2020-04-ИМ
This work was supported under internal grant no. VnGr-07/2020-04-IM of Southern Federal University.
Received: 15.05.2019
Revised: 19.01.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 5, Pages 652–660
DOI: https://doi.org/10.1134/S0001434620110036
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: B. G. Vakulov, Yu. E. Drobotov, “Riesz Potential with Integrable Density in Hölder-Variable Spaces”, Mat. Zametki, 108:5 (2020), 669–678; Math. Notes, 108:5 (2020), 652–660
Citation in format AMSBIB
\Bibitem{VakDro20}
\by B.~G.~Vakulov, Yu.~E.~Drobotov
\paper Riesz Potential with Integrable Density in H\"older-Variable Spaces
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 5
\pages 669--678
\mathnet{http://mi.mathnet.ru/mzm12446}
\crossref{https://doi.org/10.4213/mzm12446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169694}
\elib{https://elibrary.ru/item.asp?id=45083272}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 5
\pages 652--660
\crossref{https://doi.org/10.1134/S0001434620110036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097566859}
Linking options:
  • https://www.mathnet.ru/eng/mzm12446
  • https://doi.org/10.4213/mzm12446
  • https://www.mathnet.ru/eng/mzm/v108/i5/p669
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025