Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 1, Pages 21–27
DOI: https://doi.org/10.4213/mzm1244
(Mi mzm1244)
 

This article is cited in 19 scientific papers (total in 19 papers)

On the quasistability of trajectory problems of vector optimization

V. A. Emelichev, M. K. Kravtsov, D. P. Podkopaev

Belarusian State University
References:
Abstract: We consider quasistable multicriteria problems of discrete optimization on systems of subsets (trajectory problems). We single out the class of problems for which new Pareto optima can appear, while other optima for the problems do not disappear when the coefficients of the objective functions are slightly perturbed (in the Chebyshev metric). For the case of linear criteria (MINSUM), we obtain a formula for calculating the quasistability radius of the problem.
Received: 26.08.1994
Revised: 29.07.1997
English version:
Mathematical Notes, 1998, Volume 63, Issue 1, Pages 19–24
DOI: https://doi.org/10.1007/BF02316139
Bibliographic databases:
UDC: 519.10
Language: Russian
Citation: V. A. Emelichev, M. K. Kravtsov, D. P. Podkopaev, “On the quasistability of trajectory problems of vector optimization”, Mat. Zametki, 63:1 (1998), 21–27; Math. Notes, 63:1 (1998), 19–24
Citation in format AMSBIB
\Bibitem{EmeKraPod98}
\by V.~A.~Emelichev, M.~K.~Kravtsov, D.~P.~Podkopaev
\paper On the quasistability of trajectory problems of vector optimization
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 1
\pages 21--27
\mathnet{http://mi.mathnet.ru/mzm1244}
\crossref{https://doi.org/10.4213/mzm1244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1631824}
\zmath{https://zbmath.org/?q=an:0912.90244}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 1
\pages 19--24
\crossref{https://doi.org/10.1007/BF02316139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075520700003}
Linking options:
  • https://www.mathnet.ru/eng/mzm1244
  • https://doi.org/10.4213/mzm1244
  • https://www.mathnet.ru/eng/mzm/v63/i1/p21
  • This publication is cited in the following 19 articles:
    1. V. A. Emelichev, V. I. Mychkov, “Postoptimalnyi analiz vektornogo varianta odnoi investitsionnoi zadachi”, Tr. In-ta matem., 24:1 (2016), 9–18  mathnet
    2. V. A. Emelichev, V. V. Korotkov, K. G. Kuzmin, “Postoptimal analysis of a vector minimax combinatorial problem”, Cybern Syst Anal, 47:3 (2011), 415  crossref
    3. V. A. Emelichev, A. V. Karpuk, K. G. Kuz'min, “On a measure of quasistability of a certain vector linearly combinatorial Boolean problem”, Russian Math. (Iz. VUZ), 54:5 (2010), 6–14  mathnet  crossref  mathscinet
    4. Vladimir A. Emelichev, Evgeny E. Gurevsky, Andrey A. Platonov, “On stability and quasi-stability radii for a vector combinatorial problem with a parametric optimality principle”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2, 55–61  mathnet  mathscinet  zmath
    5. V. A. Emelichev, K. G. Kuz'min, “Stability criteria in vector combinatorial bottleneck problems in terms of binary relations”, Cybern Syst Anal, 44:3 (2008), 397  crossref
    6. Vladimir A. Emelichev, Andrey A. Platonov, “About one discrete analog of Hausdorff semi-continuity of suitable mapping in a vector combinatorial problem with a parametric principle of optimality ("from Slater to lexicographic")”, J. Numer. Anal. Approx. Theory, 35:2 (2006), 131  crossref
    7. V. A. Emelichev, K. G. Kuz'min, “Measure of quasistability in the metric l1 of a vector combinatorial problem with a parametric optimality principle”, Russian Math. (Iz. VUZ), 49:12 (2005), 1–8  mathnet  mathscinet
    8. Emelichev, V, “Stability analysis of the Pareto optimal solutions for some vector boolean optimization problem”, Optimization, 54:6 (2005), 545  crossref  mathscinet  zmath  isi  elib  scopus
    9. V. A. Emelichev, V. N. Krichko, “A formula for the stability radius of a vector l-extremal trajectory problem”, Discrete Math. Appl., 14:1 (2004), 33–39  mathnet  crossref  crossref  mathscinet  zmath
    10. S. E. Bukhtoyarov, V. A. Emelichev, “On the quasistability of a vector trajectory problem with a parametric optimality principle”, Russian Math. (Iz. VUZ), 48:1 (2004), 23–27  mathnet  mathscinet  zmath
    11. V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, “On a type of stability for a vector combinatorial problem with partial criteria of the form Σ-MINMAX and Σ-MINMIN”, Russian Math. (Iz. VUZ), 48:12 (2004), 15–25  mathnet  mathscinet
    12. V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, “Stability in the combinatorial vector optimization problems”, Autom. Remote Control, 65:2 (2004), 227–240  mathnet  crossref  mathscinet  zmath  isi
    13. V. A. Emelichev, Yu. v. Stepanishina, “Quasistability of a Vector Trajectory Majority Optimization Problem”, Math. Notes, 72:1 (2002), 34–42  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. Emelichev, VA, “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645  crossref  mathscinet  zmath  isi  scopus
    15. V. A. Emelichev, V. G. Pokhil'ko, “Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations”, Discrete Math. Appl., 10:4 (2000), 367–378  mathnet  crossref  mathscinet  zmath
    16. V. A. Emelichev, Yu. v. Stepanishina, “Quasistability of a vector nonlinear trajectory problem with the Pareto optimality principle”, Russian Math. (Iz. VUZ), 44:12 (2000), 25–30  mathnet  mathscinet  zmath
    17. Yemelichev, VA, “Stability and quasistability of vector trajectory problem of sequential optimization”, Doklady Akademii Nauk Belarusi, 43:3 (1999), 41  mathscinet  isi
    18. Emelichev, VA, “Stability conditions for the vector path problem in lexicographic discrete optimization”, Cybernetics and Systems Analysis, 34:4 (1998), 596  crossref  mathscinet  zmath  isi  scopus
    19. V. A. Emelichev, D. P. Podkopaev, “On a quantitative measure of stability for a vector problem in integer programming”, Comput. Math. Math. Phys., 38:11 (1998), 1727–1731  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :232
    References:73
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025