Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 6, Pages 873–887
DOI: https://doi.org/10.4213/mzm12412
(Mi mzm12412)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function

V. P. Zastavnyi

Donetsk National University
Full-text PDF (578 kB) Citations (3)
References:
Abstract: Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on $\mathbb{R}$ is equivalent to positive definiteness on $\mathbb{Z}$. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.
Keywords: positive definite functions, Fourier transform, Bochner–Khinchine theorem, piecewise linear functions with equidistant nodes.
Received: 15.04.2019
Revised: 09.08.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 6, Pages 959–971
DOI: https://doi.org/10.1134/S0001434620050272
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, “A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function”, Mat. Zametki, 107:6 (2020), 873–887; Math. Notes, 107:6 (2020), 959–971
Citation in format AMSBIB
\Bibitem{Zas20}
\by V.~P.~Zastavnyi
\paper A Generalization of Schep's Theorem
on the Positive Definiteness of a Piecewise Linear Function
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 6
\pages 873--887
\mathnet{http://mi.mathnet.ru/mzm12412}
\crossref{https://doi.org/10.4213/mzm12412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104753}
\elib{https://elibrary.ru/item.asp?id=43296085}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 6
\pages 959--971
\crossref{https://doi.org/10.1134/S0001434620050272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087082792}
Linking options:
  • https://www.mathnet.ru/eng/mzm12412
  • https://doi.org/10.4213/mzm12412
  • https://www.mathnet.ru/eng/mzm/v107/i6/p873
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :76
    References:57
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024