Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 6, Pages 873–887
DOI: https://doi.org/10.4213/mzm12412
(Mi mzm12412)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function

V. P. Zastavnyi

Donetsk National University
Full-text PDF (578 kB) Citations (3)
References:
Abstract: Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on R is equivalent to positive definiteness on Z. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.
Keywords: positive definite functions, Fourier transform, Bochner–Khinchine theorem, piecewise linear functions with equidistant nodes.
Received: 15.04.2019
Revised: 09.08.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 6, Pages 959–971
DOI: https://doi.org/10.1134/S0001434620050272
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, “A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function”, Mat. Zametki, 107:6 (2020), 873–887; Math. Notes, 107:6 (2020), 959–971
Citation in format AMSBIB
\Bibitem{Zas20}
\by V.~P.~Zastavnyi
\paper A Generalization of Schep's Theorem
on the Positive Definiteness of a Piecewise Linear Function
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 6
\pages 873--887
\mathnet{http://mi.mathnet.ru/mzm12412}
\crossref{https://doi.org/10.4213/mzm12412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104753}
\elib{https://elibrary.ru/item.asp?id=43296085}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 6
\pages 959--971
\crossref{https://doi.org/10.1134/S0001434620050272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087082792}
Linking options:
  • https://www.mathnet.ru/eng/mzm12412
  • https://doi.org/10.4213/mzm12412
  • https://www.mathnet.ru/eng/mzm/v107/i6/p873
  • This publication is cited in the following 3 articles:
    1. V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91  mathnet  crossref  elib
    2. Z. Fang, “Optimization of linear algebra core function framework on multicore processors”, Applied Mathematics and Nonlinear Sciences, 8:1 (2023), 1585  crossref
    3. Liflyand E. Trigub R., “Wiener Algebras and Trigonometric Series in a Coordinated Fashion”, Constr. Approx., 54:2 (2021), 185–206  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :93
    References:64
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025