Abstract:
Schep proved that, for a piecewise linear function
with nodes at integer points,
positive definiteness on R
is equivalent to positive definiteness
on Z.
In this paper, a similar theorem
for an entire function of exponential type is proved,
and
a generalization Schep's theorem is obtained.
Keywords:
positive definite functions, Fourier transform, Bochner–Khinchine theorem,
piecewise linear functions with equidistant nodes.
Citation:
V. P. Zastavnyi, “A Generalization of Schep's Theorem
on the Positive Definiteness of a Piecewise Linear Function”, Mat. Zametki, 107:6 (2020), 873–887; Math. Notes, 107:6 (2020), 959–971
\Bibitem{Zas20}
\by V.~P.~Zastavnyi
\paper A Generalization of Schep's Theorem
on the Positive Definiteness of a Piecewise Linear Function
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 6
\pages 873--887
\mathnet{http://mi.mathnet.ru/mzm12412}
\crossref{https://doi.org/10.4213/mzm12412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104753}
\elib{https://elibrary.ru/item.asp?id=43296085}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 6
\pages 959--971
\crossref{https://doi.org/10.1134/S0001434620050272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087082792}
Linking options:
https://www.mathnet.ru/eng/mzm12412
https://doi.org/10.4213/mzm12412
https://www.mathnet.ru/eng/mzm/v107/i6/p873
This publication is cited in the following 3 articles:
V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91
Z. Fang, “Optimization of linear algebra core function framework on multicore processors”, Applied Mathematics and Nonlinear Sciences, 8:1 (2023), 1585
Liflyand E. Trigub R., “Wiener Algebras and Trigonometric Series in a Coordinated Fashion”, Constr. Approx., 54:2 (2021), 185–206