Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 4, Pages 575–590
DOI: https://doi.org/10.4213/mzm12402
(Mi mzm12402)
 

Uniqueness of the Continuation of a Certain Function to a Positive Definite Function

A. Manov

Donetsk National University
References:
Abstract: In 1940, M. G. Krein obtained necessary and sufficient conditions for the extension of a continuous function $f$ defined in an interval $(-a,a)$, $a>0$, to a positive definite function on the whole number axis $\mathbb R$. In addition, Krein showed that the function $1-|x|$, $|x|<a$, can be extended to a positive definite one on $\mathbb R$ if and only if $0<a\le 2$, and this function has a unique extension only in the case $a=2$. The present paper deals with the problem of uniqueness of the extension of the function $1-|x|$, $|x|\le a$, $a\in(0,1)$, for a class of positive definite functions on $\mathbb R$ whose support is contained in the closed interval $[-1,1]$ (the class $\mathfrak F$). It is proved that if $a\in[1/2,1]$ and $\operatorname{Re}\varphi(x)=1-|x|$, $|x|\le a$, for some $\varphi\in\mathfrak F$, then $\varphi(x)=(1-|x|)_+$, $x\in\mathbb R$. In addition, for any $a\in(0,1/2)$, there exists a function $\varphi\in\mathfrak F$ such that $\varphi(x)=1-|x|$, $|x|\le a$, but $\varphi(x)\not\equiv(1-|x|)_+$. Also the paper deals with extremal problems for positive definite functions and nonnegative trigonometric polynomials indirectly related to the extension problem under consideration.
Keywords: extension of positive definite functions, Bochner–Khinchine theorem, piecewise linear functions, nonnegative trigonometric polynomials, extremal problems.
Received: 03.04.2019
Revised: 13.09.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 4, Pages 639–652
DOI: https://doi.org/10.1134/S0001434620030311
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: A. Manov, “Uniqueness of the Continuation of a Certain Function to a Positive Definite Function”, Mat. Zametki, 107:4 (2020), 575–590; Math. Notes, 107:4 (2020), 639–652
Citation in format AMSBIB
\Bibitem{Man20}
\by A.~Manov
\paper Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 4
\pages 575--590
\mathnet{http://mi.mathnet.ru/mzm12402}
\crossref{https://doi.org/10.4213/mzm12402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4081962}
\elib{https://elibrary.ru/item.asp?id=43286375}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 4
\pages 639--652
\crossref{https://doi.org/10.1134/S0001434620030311}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083851869}
Linking options:
  • https://www.mathnet.ru/eng/mzm12402
  • https://doi.org/10.4213/mzm12402
  • https://www.mathnet.ru/eng/mzm/v107/i4/p575
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :56
    References:48
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024