Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 4, Pages 561–574
DOI: https://doi.org/10.4213/mzm12336
(Mi mzm12336)
 

This article is cited in 3 scientific papers (total in 3 papers)

Yet Another Description of the Connes–Higson Functor

G. S. Makeev

Lomonosov Moscow State University
Full-text PDF (535 kB) Citations (3)
References:
Abstract: Suppose that $A$ and $B$ are $C^{*}$-algebras, $A$ is separable, and $B$ is stable. The elements of the group $E_{1}(A,B)$ in Connes–Higson $E$-theory are represented by $*$-homomorphisms from the suspension of $A$ to the asymptotic algebra $\mathfrak AB$. In the paper, an endofunctor $\mathfrak M$ in the category of $C^{*}$-algebras is constructed and a set of special homotopy classes of $*$-homomorphisms from $A$ to $\mathfrak{MA}B$ is defined so that this set endowed with the natural structure of an Abelian group coincides with $E_{1}(A,B)$.
Keywords: $E$-theory, $KK$-theory, homotopy invariant functor.
Received: 04.02.2019
Revised: 10.06.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 4, Pages 628–638
DOI: https://doi.org/10.1134/S000143462003030X
Bibliographic databases:
Document Type: Article
UDC: 517.98
PACS: 02.30.Sa
Language: Russian
Citation: G. S. Makeev, “Yet Another Description of the Connes–Higson Functor”, Mat. Zametki, 107:4 (2020), 561–574; Math. Notes, 107:4 (2020), 628–638
Citation in format AMSBIB
\Bibitem{Mak20}
\by G.~S.~Makeev
\paper Yet Another Description of the Connes--Higson Functor
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 4
\pages 561--574
\mathnet{http://mi.mathnet.ru/mzm12336}
\crossref{https://doi.org/10.4213/mzm12336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4081961}
\elib{https://elibrary.ru/item.asp?id=43274277}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 4
\pages 628--638
\crossref{https://doi.org/10.1134/S000143462003030X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083847036}
Linking options:
  • https://www.mathnet.ru/eng/mzm12336
  • https://doi.org/10.4213/mzm12336
  • https://www.mathnet.ru/eng/mzm/v107/i4/p561
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :30
    References:34
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024