Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 1, Pages 74–83
DOI: https://doi.org/10.4213/mzm12290
(Mi mzm12290)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients

N. N. Konechnajaa, K. A. Mirzoevb

a Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
b Lomonosov Moscow State University
Full-text PDF (519 kB) Citations (8)
References:
Abstract: Let $a_1,a_2,\dots,a_n$, and $\lambda$ be complex numbers, and let $p_1,p_2,\dots,p_n$ be measurable complex-valued functions on $\mathbb R_+$ ($:=[0,+\infty)$) such that
$$ |p_1|+(1+|p_2-p_1|)\sum_{j=2}^n|p_j| \in L^1_{\mathrm{loc}}(\mathbb R_+). $$
A construction is proposed which makes it possible to well define the differential equation
$$ y^{(n)}+(a_1+p_1(x))y^{(n-1)} +(a_2+p'_2(x)) y^{(n-2)}+\dotsb +(a_n+p'_n(x))y=\lambda y $$
under this condition, where all derivatives are understood in the sense of distributions. This construction is used to show that the leading term of the asymptotics as $x\to +\infty$ of a fundamental system of solutions of this equation and of their derivatives can be determined, as in the classical case, from the roots of the polynomial
$$ Q(z)=z^n+a_1 z^{n-1}+\dotsb+a_n-\lambda, $$
provided that the functions $p_1,p_2,\dots,p_n$ satisfy certain conditions of integral decay at infinity. The case where $a_1=\dotsb=a_n=\lambda=0$ is considered separately and in more detail.
Keywords: differential equations with distribution coefficients, quasiderivatives, quasidifferential expression, leading term of the asymptotics of solutions of differential equations.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00250
Russian Science Foundation 17-11-01215
The work on Lemma 1 and Theorem 1 was supported by the Russian Science Foundation under grant no. 17-11-01215. The work on the corollary and Theorem 2 was supported by the Russian Foundation for Basic Research under grant no. 18-01-00250.
Received: 13.10.2018
Revised: 16.12.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 1, Pages 81–88
DOI: https://doi.org/10.1134/S0001434619070083
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Mat. Zametki, 106:1 (2019), 74–83; Math. Notes, 106:1 (2019), 81–88
Citation in format AMSBIB
\Bibitem{KonMir19}
\by N.~N.~Konechnaja, K.~A.~Mirzoev
\paper The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 1
\pages 74--83
\mathnet{http://mi.mathnet.ru/mzm12290}
\crossref{https://doi.org/10.4213/mzm12290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981327}
\elib{https://elibrary.ru/item.asp?id=38487781}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 1
\pages 81--88
\crossref{https://doi.org/10.1134/S0001434619070083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071652402}
Linking options:
  • https://www.mathnet.ru/eng/mzm12290
  • https://doi.org/10.4213/mzm12290
  • https://www.mathnet.ru/eng/mzm/v106/i1/p74
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :69
    References:47
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024