Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 295–306
DOI: https://doi.org/10.4213/mzm12227
(Mi mzm12227)
 

Ergodic Properties of Tame Dynamical Systems

A. V. Romanov

Moscow Institute of Electronics and Mathematics — Higher School of Economics
References:
Abstract: The problem of the $*$-weak decomposability into ergodic components of a topological $\mathbb N_0$-dynamical system $(\Omega,\varphi)$, where $\varphi$ is a continuous endomorphism of a compact metric space $\Omega$, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup $E(\Omega,\varphi)$ consists of endomorphisms of $\Omega$ of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of $(\Omega,\varphi)$ and the mutual structure of minimal sets and ergodic measures is discussed.
Keywords: ergodic mean, tame dynamical system, enveloping semigroup.
Received: 14.10.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 286–295
DOI: https://doi.org/10.1134/S0001434619070319
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. V. Romanov, “Ergodic Properties of Tame Dynamical Systems”, Mat. Zametki, 106:2 (2019), 295–306; Math. Notes, 106:2 (2019), 286–295
Citation in format AMSBIB
\Bibitem{Rom19}
\by A.~V.~Romanov
\paper Ergodic Properties of Tame Dynamical Systems
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 295--306
\mathnet{http://mi.mathnet.ru/mzm12227}
\crossref{https://doi.org/10.4213/mzm12227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985707}
\elib{https://elibrary.ru/item.asp?id=38590322}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 286--295
\crossref{https://doi.org/10.1134/S0001434619070319}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071614616}
Linking options:
  • https://www.mathnet.ru/eng/mzm12227
  • https://doi.org/10.4213/mzm12227
  • https://www.mathnet.ru/eng/mzm/v106/i2/p295
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024