Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 4, Pages 519–530
DOI: https://doi.org/10.4213/mzm12216
(Mi mzm12216)
 

This article is cited in 2 scientific papers (total in 2 papers)

Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (467 kB) Citations (2)
References:
Abstract: The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials $m_{n,N}^\alpha(x)$, $n=0,1,\dots$, which generate, for $\alpha>-1$, an orthonormal system on the grid $\Omega_\delta=\{0,\delta,2\delta,\dots\}$ with weight
$$ \rho_N(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)} (1-e^{-\delta})^{\alpha+1},\qquad \text{where}\quad \delta=\frac{1}{N},\quad N\ge 1. $$
The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function $\lambda_{n,N}^\alpha(x)$ of Fourier sums in terms of the modified Meixner polynomials for $x\in[\theta_n/2,\infty)$ and $\theta_n=4n+2\alpha+2$.
Keywords: Meixner polynomials, Fourier series, Lebesgue function.
Received: 12.10.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 4, Pages 526–536
DOI: https://doi.org/10.1134/S0001434619090220
Bibliographic databases:
Document Type: Article
UDC: 517.521
Language: Russian
Citation: R. M. Gadzhimirzaev, “Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials”, Mat. Zametki, 106:4 (2019), 519–530; Math. Notes, 106:4 (2019), 526–536
Citation in format AMSBIB
\Bibitem{Gad19}
\by R.~M.~Gadzhimirzaev
\paper Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 4
\pages 519--530
\mathnet{http://mi.mathnet.ru/mzm12216}
\crossref{https://doi.org/10.4213/mzm12216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017566}
\elib{https://elibrary.ru/item.asp?id=41704772}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 4
\pages 526--536
\crossref{https://doi.org/10.1134/S0001434619090220}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074129726}
Linking options:
  • https://www.mathnet.ru/eng/mzm12216
  • https://doi.org/10.4213/mzm12216
  • https://www.mathnet.ru/eng/mzm/v106/i4/p519
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024