Abstract:
A nonlocal boundary-value problem for a linear ordinary differential equation with fractional discretely distributed differentiation operator is considered. The existence and uniqueness theorem for the solution of this problem is proved.
Citation:
L. Kh. Gadzova, “Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator”, Mat. Zametki, 106:6 (2019), 860–865; Math. Notes, 106:6 (2019), 904–908
\Bibitem{Gad19}
\by L.~Kh.~Gadzova
\paper Nonlocal Boundary-Value Problem for a Linear Ordinary Differential Equation with Fractional Discretely Distributed Differentiation Operator
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 6
\pages 860--865
\mathnet{http://mi.mathnet.ru/mzm12209}
\crossref{https://doi.org/10.4213/mzm12209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045672}
\elib{https://elibrary.ru/item.asp?id=43224995}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 6
\pages 904--908
\crossref{https://doi.org/10.1134/S0001434619110269}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504614300026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077063813}
Linking options:
https://www.mathnet.ru/eng/mzm12209
https://doi.org/10.4213/mzm12209
https://www.mathnet.ru/eng/mzm/v106/i6/p860
This publication is cited in the following 10 articles:
Arsen V. Pskhu, “Inversion formulas for distributed order integration and differentiation operators”, J Math Sci, 2025
Zhongdi Cen, Jian Huang, Aimin Xu, “An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions”, J Math Chem, 2024
L. Kh Gadzova, “NAYMARK PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION WITH A FRACTIONAL DISCRETE DISTRIBUTED DIFFERENTIATION OPERATOR”, Differencialʹnye uravneniâ, 60:11 (2024), 1452
L. Kh. Gadzova, “Naimark Problem for an Ordinary Differential Equation
with a Fractional Discrete Distributed
Differentiation Operator”, Diff Equat, 60:11 (2024), 1515
A. Pskhu, “Transmutation operators intertwining first-order and distributed-order derivatives”, Bol. Soc. Mat. Mex., 29:3 (2023), 93
A. Seal, S. Natesan, “Convergence analysis of a second-order scheme for fractional differential equation with integral boundary conditions”, J. Appl. Math. Comput., 69:1 (2023), 465
B. I. Efendiev, “Problem with sturm type conditions for a second-order ordinary differential equation with a distributed differentiation operator”, Diff Equat, 58:12 (2022), 1579
Mary S. Joe Christin, Tamilselvan A., “Numerical Method For a Non-Local Boundary Value Problem With Caputo Fractional Order”, J. Appl. Math. Comput., 67:1-2 (2021), 671–687
B. I. Efendiev, “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Doklady AMAN, 21:4 (2021), 37–44