Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 457–469
DOI: https://doi.org/10.4213/mzm12204
(Mi mzm12204)
 

This article is cited in 2 scientific papers (total in 2 papers)

Parseval Frames and the Discrete Walsh Transform

Yu. A. Farkov, M. G. Robakidze

Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Moscow
Full-text PDF (505 kB) Citations (2)
References:
Abstract: Suppose that $N=2^n$ and $N_1=2^{n-1}$, where $n$ is a natural number. Denote by ${\mathbb C}_N$ the space of complex $N$-periodic sequences with standard inner product. For any $N$-dimensional complex nonzero vector $(b_0,b_1,\dots,b_{N-1})$ satisfying the condition
$$ |b_{l}|^2+|b_{l+N_1}|^2 \le \frac{2}{N^2}\,, \qquad l=0,1,\dots,N_1-1, $$
we find sequences $u_0,u_1,\dots,u_r\in {\mathbb C}_N$ such that the system of their binary shifts is a Parseval frame for ${\mathbb C}_N$. Moreover, the vector $(b_0,b_1,\dots, b_{N-1})$ specifies the discrete Walsh transform of the sequence $u_0$, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
Keywords: Walsh functions, discrete transforms, wavelets, frames, periodic sequences.
Received: 01.10.2018
Revised: 10.12.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 446–456
DOI: https://doi.org/10.1134/S0001434619090141
Bibliographic databases:
Document Type: Article
UDC: 517.518
PACS: 02.30.Lt
Language: Russian
Citation: Yu. A. Farkov, M. G. Robakidze, “Parseval Frames and the Discrete Walsh Transform”, Mat. Zametki, 106:3 (2019), 457–469; Math. Notes, 106:3 (2019), 446–456
Citation in format AMSBIB
\Bibitem{FarRob19}
\by Yu.~A.~Farkov, M.~G.~Robakidze
\paper Parseval Frames and the Discrete Walsh Transform
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 457--469
\mathnet{http://mi.mathnet.ru/mzm12204}
\crossref{https://doi.org/10.4213/mzm12204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017560}
\elib{https://elibrary.ru/item.asp?id=41707688}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 446--456
\crossref{https://doi.org/10.1134/S0001434619090141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074167614}
Linking options:
  • https://www.mathnet.ru/eng/mzm12204
  • https://doi.org/10.4213/mzm12204
  • https://www.mathnet.ru/eng/mzm/v106/i3/p457
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :41
    References:62
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024