Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 4, Pages 483–489
DOI: https://doi.org/10.4213/mzm122
(Mi mzm122)
 

This article is cited in 16 scientific papers (total in 16 papers)

Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces

S. V. Astashkina, F. A. Sukochevb

a Samara State University
b Flinders University
References:
Abstract: The sums of independent functions (random variables) in a symmetric space $X$ on $[0,1]$ are studied. We use the operator approach closely connected with the methods developed, primarily, by Braverman. Our main results concern the Orlicz exponential spaces $\exp(L_p)$, $1\leqslant p\leqslant\infty$, and Lorentz spaces $\Lambda_\psi$. As a corollary, we obtain results that supplement the well-known Johnson–Schechtman theorem stating that the condition $L_p\subset X$, $p<\infty$, implies the equivalence of the norms of sums of independent functions and their disjoint “copies”. In addition, a statement converse, in a certain sense, to this theorem is proved.
Received: 12.03.2004
English version:
Mathematical Notes, 2004, Volume 76, Issue 4, Pages 449–454
DOI: https://doi.org/10.1023/B:MATN.0000043474.00734.ec
Bibliographic databases:
UDC: 517.5+517.982
Language: Russian
Citation: S. V. Astashkin, F. A. Sukochev, “Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces”, Mat. Zametki, 76:4 (2004), 483–489; Math. Notes, 76:4 (2004), 449–454
Citation in format AMSBIB
\Bibitem{AstSuk04}
\by S.~V.~Astashkin, F.~A.~Sukochev
\paper Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 4
\pages 483--489
\mathnet{http://mi.mathnet.ru/mzm122}
\crossref{https://doi.org/10.4213/mzm122}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2112064}
\zmath{https://zbmath.org/?q=an:1076.46020}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 4
\pages 449--454
\crossref{https://doi.org/10.1023/B:MATN.0000043474.00734.ec}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224874900018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044227974}
Linking options:
  • https://www.mathnet.ru/eng/mzm122
  • https://doi.org/10.4213/mzm122
  • https://www.mathnet.ru/eng/mzm/v76/i4/p483
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024