Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 395–408
DOI: https://doi.org/10.4213/mzm12199
(Mi mzm12199)
 

This article is cited in 4 scientific papers (total in 4 papers)

Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation

A. I. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (513 kB) Citations (4)
References:
Abstract: The paper is devoted to the study of inverse problems of finding, together with a solution $u(x,t)$ of the diffusion equation
$$ u_t-\Delta u +[c(x,t)+aq_0(x,t)]u=f(x,t), $$
the parameter $a$ characterizing absorption ($c(x,t)$ and $q_0(x,t)$ are given functions). It is assumed that, on the function $u(x,t)$, nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions $(u(x,t),a)$ such that the function $u(x,t)$ has all Sobolev generalized derivatives appearing in the equation and $a$ is a nonnegative number.
Keywords: diffusion equation, nonpercolation condition, unknown parameter, inverse problems, final integral overdetermination conditions, existence.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00620
Received: 26.09.2018
Revised: 18.03.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 378–389
DOI: https://doi.org/10.1134/S0001434619090074
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. I. Kozhanov, “Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation”, Mat. Zametki, 106:3 (2019), 395–408; Math. Notes, 106:3 (2019), 378–389
Citation in format AMSBIB
\Bibitem{Koz19}
\by A.~I.~Kozhanov
\paper Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 395--408
\mathnet{http://mi.mathnet.ru/mzm12199}
\crossref{https://doi.org/10.4213/mzm12199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017555}
\elib{https://elibrary.ru/item.asp?id=41699578}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 378--389
\crossref{https://doi.org/10.1134/S0001434619090074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074070472}
Linking options:
  • https://www.mathnet.ru/eng/mzm12199
  • https://doi.org/10.4213/mzm12199
  • https://www.mathnet.ru/eng/mzm/v106/i3/p395
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:443
    Full-text PDF :77
    References:57
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024