Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 5, paper published in the English version journal (Mi mzm12188)  

This article is cited in 3 scientific papers (total in 3 papers)

Papers published in the English version of the journal

On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces

A. N. Karapetyantsab, H. Rafeiroc, S. G. Samkod

a Southern Federal University, Rostov-on-Don, 334006 Russia
b State University of New York at Albany, 12222 USA
c Department of Mathematical Sciences, College of Sciences, United Arab Emirates University, Al Ain, 15551 UAE
d University of Algarve, Faro, 8005-139 Portugal
Citations (3)
Abstract: We give a proof of the boundedness of the Bergman projection in generalized variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end, we prove the boundedness of the Calderón–Zygmund operators on generalized variable-exponent vanishing Morrey spaces. We give the proof of the latter in the general context of real functions on $\mathbb R^n$, since it is new in such a setting and is of independent interest. We also study the approximation by mollified dilations and estimate the growth of functions near the boundary.
Keywords: singular operator, Morrey space, Bergman-type space, Calderón–Zygmund operator.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00094
18-51-05009 Arm-a
19-01-00223
United Arab Emirates University G00002994
The work of A. N. Karapetyants and S. G. Samko was supported in part by the Russian Foundation for Basic Research under grant 18-01-00094. The work of A. N. Karapetyants was also supported in part by the Russian Foundation for Basic Research under grant 18-51-05009 Arm-a and by Visiting Fulbright Scholar Program. The research of H. Rafeiro was supported by a Research Start-up Grant of United Arab Emirates University, Al Ain, United Arab Emirates, via grant no. G00002994. The research of S. Samko was supported by the Russian Foundation for Basic Research under grant 19-01-00223.
Received: 13.09.2018
Revised: 16.02.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 5, Pages 727–739
DOI: https://doi.org/10.1134/S0001434619110075
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. N. Karapetyants, H. Rafeiro, S. G. Samko, “On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces”, Math. Notes, 106:5 (2019), 727–739
Citation in format AMSBIB
\Bibitem{KarRafSam19}
\by A.~N.~Karapetyants, H.~Rafeiro, S.~G.~Samko
\paper On Singular Operators in Vanishing Generalized Variable-Exponent
Morrey Spaces and Applications to Bergman-Type Spaces
\jour Math. Notes
\yr 2019
\vol 106
\issue 5
\pages 727--739
\mathnet{http://mi.mathnet.ru/mzm12188}
\crossref{https://doi.org/10.1134/S0001434619110075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4065578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504614300007}
\elib{https://elibrary.ru/item.asp?id=43224965}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077091321}
Linking options:
  • https://www.mathnet.ru/eng/mzm12188
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:220
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024