Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 5, Pages 700–707
DOI: https://doi.org/10.4213/mzm12168
(Mi mzm12168)
 

This article is cited in 1 scientific paper (total in 1 paper)

Lemniscate Zone and Distortion Theorems for Multivalent Functions. II

V. N. Dubininab

a Far Eastern Federal University, Vladivostok
b Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok
Full-text PDF (497 kB) Citations (1)
References:
Abstract: For meromorphic circumferentially mean $p$-valent functions, an analog of the classical distortion theorem is proved. It is shown that the existence of connected lemniscates of the function and a constraint on a cover of two given points lead to an inequality involving the Green energy of a discrete signed measure concentrated at the zeros of the given function and the absolute values of its derivatives at these zeros. This inequality is an equality for the superposition of a certain univalent function and an appropriate Zolotarev fraction.
Keywords: meromorphic function, $p$-valent function, lemniscate, Zolotarev fraction, symmetrization.
Funding agency Grant number
Russian Science Foundation 14-11-00022
This work was supported by the Russian Science Foundation under grant 14-11-00022.
Received: 15.03.2018
English version:
Mathematical Notes, 2018, Volume 104, Issue 5, Pages 683–688
DOI: https://doi.org/10.1134/S0001434618110081
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Lemniscate Zone and Distortion Theorems for Multivalent Functions. II”, Mat. Zametki, 104:5 (2018), 700–707; Math. Notes, 104:5 (2018), 683–688
Citation in format AMSBIB
\Bibitem{Dub18}
\by V.~N.~Dubinin
\paper Lemniscate Zone and Distortion Theorems for Multivalent Functions.~II
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 5
\pages 700--707
\mathnet{http://mi.mathnet.ru/mzm12168}
\crossref{https://doi.org/10.4213/mzm12168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871518}
\elib{https://elibrary.ru/item.asp?id=36361312}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 5
\pages 683--688
\crossref{https://doi.org/10.1134/S0001434618110081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454546800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059240708}
Linking options:
  • https://www.mathnet.ru/eng/mzm12168
  • https://doi.org/10.4213/mzm12168
  • https://www.mathnet.ru/eng/mzm/v104/i5/p700
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :57
    References:58
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024