Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 174–187
DOI: https://doi.org/10.4213/mzm12156
(Mi mzm12156)
 

On a Theorem of Kadets and Pełczyński

S. V. Astashkin

Samara State University
References:
Abstract: Necessary and sufficient conditions are found under which a symmetric space $X$ on $[0,1]$ of type $2$ has the following property, which was first proved for the spaces $L_p$, $p>2$, by Kadets and Pełcziński: if $\{u_n\}_{n=1}^\infty$ is an unconditional basic sequence in $X$ such that
$$ \|u_n\|_X\asymp\|u_n\|_{L_1},\qquad n\in\mathbb N, $$
then the norms of the spaces $X$ and $L_1$ are equivalent on the closed linear span $[u_n]$ in $X$. For sequences of martingale differences, this implication holds in any symmetric space of type $2$.
Keywords: Kadets–Pełczyński alternative, symmetric space, Rademacher type, Boyd indices, (disjointly) strictly singular inclusion.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.470.2016/1.4
Russian Foundation for Basic Research 18-01-00414-а
This work was prepared in the framework of the implementation of the state task of the Ministry of Education and Science of the Russian Federation (project no. 1.470.2016/1.4) and also supported in part by the Russian Foundation for Basic Research (grant no. 18-01-00414-a).
Received: 19.08.2018
Revised: 14.10.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 172–182
DOI: https://doi.org/10.1134/S0001434619070216
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
Language: Russian
Citation: S. V. Astashkin, “On a Theorem of Kadets and Pełczyński”, Mat. Zametki, 106:2 (2019), 174–187; Math. Notes, 106:2 (2019), 172–182
Citation in format AMSBIB
\Bibitem{Ast19}
\by S.~V.~Astashkin
\paper On a Theorem of Kadets and Pe{\l}czy{\'n}ski
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 174--187
\mathnet{http://mi.mathnet.ru/mzm12156}
\crossref{https://doi.org/10.4213/mzm12156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985698}
\elib{https://elibrary.ru/item.asp?id=38590313}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 172--182
\crossref{https://doi.org/10.1134/S0001434619070216}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071423738}
Linking options:
  • https://www.mathnet.ru/eng/mzm12156
  • https://doi.org/10.4213/mzm12156
  • https://www.mathnet.ru/eng/mzm/v106/i2/p174
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024