Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 2, Pages 231–242
DOI: https://doi.org/10.4213/mzm12138
(Mi mzm12138)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients

N. N. Konechnajaa, K. A. Mirzoevb, A. A. Shkalikovb

a Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
b Lomonosov Moscow State University
References:
Abstract: Asymptotic formulas as $x\to \infty$ are obtained for a fundamental system of solutions to equations of the form
\begin{equation*} l(y): = (-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y, \qquad x\in [1,\infty), \end{equation*}
where $p$ is a locally integrable function representable as
$$ p(x) = (1+r(x))^{-1},\qquad r\in L^1(1,\infty), $$
and $q$ is a distribution such that $q= \sigma^{(k)}$ for a fixed integer $k$, $0\leqslant k\leqslant n$, and a function $\sigma$ satisfying the conditions
$$ \begin{aligned} \sigma &\in L^1(1,\infty), \qquad \text{if}\quad k <n, \\ |\sigma|(1+|r|) (1+ |\sigma|) &\in L^1(1,\infty), \qquad \text{if}\quad k = n. \end{aligned} $$
Similar results are obtained for functions representable as
$$ p(x) = x^{2n+\nu}(1+ r(x))^{-1},\qquad q= \sigma^{(k)},\qquad \sigma(x)=x^{k+\nu} (\beta +s(x)), $$
for fixed $k$, $0\leqslant k\leqslant n$, where the functions $r$ and $s$ satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression $l(y)$ (for real functions $p$ and $q$) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case $n=1$.
Keywords: differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.
Funding agency Grant number
Russian Science Foundation 17-11-01215
Russian Foundation for Basic Research 18-01-00250
Received: 04.04.2018
English version:
Mathematical Notes, 2018, Volume 104, Issue 2, Pages 244–252
DOI: https://doi.org/10.1134/S0001434618070258
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients”, Mat. Zametki, 104:2 (2018), 231–242; Math. Notes, 104:2 (2018), 244–252
Citation in format AMSBIB
\Bibitem{KonMirShk18}
\by N.~N.~Konechnaja, K.~A.~Mirzoev, A.~A.~Shkalikov
\paper On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 2
\pages 231--242
\mathnet{http://mi.mathnet.ru/mzm12138}
\crossref{https://doi.org/10.4213/mzm12138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833498}
\elib{https://elibrary.ru/item.asp?id=35410184}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 2
\pages 244--252
\crossref{https://doi.org/10.1134/S0001434618070258}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446511500025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054501126}
Linking options:
  • https://www.mathnet.ru/eng/mzm12138
  • https://doi.org/10.4213/mzm12138
  • https://www.mathnet.ru/eng/mzm/v104/i2/p231
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :92
    References:67
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024