Abstract:
Asymptotic formulas as x→∞ are obtained for a fundamental system of solutions to equations of the form l(y):=(−1)n(p(x)y(n))(n)+q(x)y=λy,x∈[1,∞), where p is a locally integrable function representable as p(x)=(1+r(x))−1,r∈L1(1,∞), and q is a distribution such that q=σ(k) for a fixed integer k, 0⩽k⩽n, and a function σ satisfying the conditions
σ∈L1(1,∞),ifk<n,|σ|(1+|r|)(1+|σ|)∈L1(1,∞),ifk=n.
Similar results are obtained for functions representable as p(x)=x2n+ν(1+r(x))−1,q=σ(k),σ(x)=xk+ν(β+s(x)), for fixed k, 0⩽k⩽n, where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l(y) (for real functions p and q) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n=1.
Keywords:
differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.
Citation:
N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients”, Mat. Zametki, 104:2 (2018), 231–242; Math. Notes, 104:2 (2018), 244–252
\Bibitem{KonMirShk18}
\by N.~N.~Konechnaja, K.~A.~Mirzoev, A.~A.~Shkalikov
\paper On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 2
\pages 231--242
\mathnet{http://mi.mathnet.ru/mzm12138}
\crossref{https://doi.org/10.4213/mzm12138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833498}
\elib{https://elibrary.ru/item.asp?id=35410184}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 2
\pages 244--252
\crossref{https://doi.org/10.1134/S0001434618070258}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446511500025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054501126}
Linking options:
https://www.mathnet.ru/eng/mzm12138
https://doi.org/10.4213/mzm12138
https://www.mathnet.ru/eng/mzm/v104/i2/p231
This publication is cited in the following 16 articles:
Yaudat T. Sultanaev, Nur F. Valeev, Elvira A. Nazirova, “On the Asymptotic of Solutions of Odd-Order Two-Term Differential Equations”, Mathematics, 12:2 (2024), 213
Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the Asymptotic Behavior of Solutions of Third-Order
Binomial Differential Equations”, Diff Equat, 60:2 (2024), 259
Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the asymptotic behavior of solutions of third-order binomial differential equations”, Differencialʹnye uravneniâ, 60:2 (2024), 273
N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “Asymptotics of Solutions of Two-Term Differential Equations”, Math. Notes, 113:2 (2023), 228–242
N. P. Bondarenko, “Linear differential operators with distribution coefficients of various singularity orders”, Math. Methods in App. Sciences, 46:6 (2023), 6639
E. E. Chitorkin, N. P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal. Math. Phys., 13:5 (2023), 79
N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Construction of asymptotics of solutions to the Sturm–Liouville differential equations in the class of oscillating coefficients”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:5 (2023), 253–257
L. N. Valeeva, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville Differential Equations with Rapidly Oscillating Coefficients”, Math. Notes, 112:6 (2022), 1059–1064
N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Odd-Order Differential Equations with Oscillating Coefficients”, Math. Notes, 109:6 (2021), 980–985
D. A. Chechin, A. D. Baev, S. A. Shabrov, “Ob odnoi granichnoi zadache s razryvnymi resheniyami i silnoi nelineinostyu”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 153–157
N. P. Bondarenko, “Solving an inverse problem for the Sturm-Liouville operator with singular potential by Yurko's method”, Tamkang J. Math., 52:1, SI (2021), 125–154
K. A. Mirzoev, N. N. Konechnaja, “Asymptotics of solutions to linear differential equations of odd order”, Moscow University Mathematics Bulletin, 75:1 (2020), 22–26
Ch. Gao, M. Ran, “Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition”, AIMS Math., 5:2 (2020), 904–922
A. D. Baev, D. A. Chechin, M. B. Zvereva, S. A. Shabrov, “Stieltjes differential in impulse nonlinear problems”, Dokl. Math., 101:1 (2020), 5–8
M. Yu. Ignatiev, “OnWeyl-type Solutions of Differential Systems with a Singularity. The Case of Discontinuous Potential”, Math. Notes, 108:6 (2020), 814–826
N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Math. Notes, 106:1 (2019), 81–88