Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 2, Pages 231–242
DOI: https://doi.org/10.4213/mzm12138
(Mi mzm12138)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients

N. N. Konechnajaa, K. A. Mirzoevb, A. A. Shkalikovb

a Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
b Lomonosov Moscow State University
References:
Abstract: Asymptotic formulas as x are obtained for a fundamental system of solutions to equations of the form
l(y):=(1)n(p(x)y(n))(n)+q(x)y=λy,x[1,),
where p is a locally integrable function representable as
p(x)=(1+r(x))1,rL1(1,),
and q is a distribution such that q=σ(k) for a fixed integer k, 0kn, and a function σ satisfying the conditions
σL1(1,),ifk<n,|σ|(1+|r|)(1+|σ|)L1(1,),ifk=n.
Similar results are obtained for functions representable as
p(x)=x2n+ν(1+r(x))1,q=σ(k),σ(x)=xk+ν(β+s(x)),
for fixed k, 0kn, where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l(y) (for real functions p and q) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n=1.
Keywords: differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.
Funding agency Grant number
Russian Science Foundation 17-11-01215
Russian Foundation for Basic Research 18-01-00250
Received: 04.04.2018
English version:
Mathematical Notes, 2018, Volume 104, Issue 2, Pages 244–252
DOI: https://doi.org/10.1134/S0001434618070258
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients”, Mat. Zametki, 104:2 (2018), 231–242; Math. Notes, 104:2 (2018), 244–252
Citation in format AMSBIB
\Bibitem{KonMirShk18}
\by N.~N.~Konechnaja, K.~A.~Mirzoev, A.~A.~Shkalikov
\paper On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 2
\pages 231--242
\mathnet{http://mi.mathnet.ru/mzm12138}
\crossref{https://doi.org/10.4213/mzm12138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833498}
\elib{https://elibrary.ru/item.asp?id=35410184}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 2
\pages 244--252
\crossref{https://doi.org/10.1134/S0001434618070258}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446511500025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054501126}
Linking options:
  • https://www.mathnet.ru/eng/mzm12138
  • https://doi.org/10.4213/mzm12138
  • https://www.mathnet.ru/eng/mzm/v104/i2/p231
  • This publication is cited in the following 16 articles:
    1. Yaudat T. Sultanaev, Nur F. Valeev, Elvira A. Nazirova, “On the Asymptotic of Solutions of Odd-Order Two-Term Differential Equations”, Mathematics, 12:2 (2024), 213  crossref
    2. Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the Asymptotic Behavior of Solutions of Third-Order Binomial Differential Equations”, Diff Equat, 60:2 (2024), 259  crossref
    3. Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova, “On the asymptotic behavior of solutions of third-order binomial differential equations”, Differencialʹnye uravneniâ, 60:2 (2024), 273  crossref
    4. N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “Asymptotics of Solutions of Two-Term Differential Equations”, Math. Notes, 113:2 (2023), 228–242  mathnet  crossref  crossref
    5. N. P. Bondarenko, “Linear differential operators with distribution coefficients of various singularity orders”, Math. Methods in App. Sciences, 46:6 (2023), 6639  crossref  mathscinet
    6. E. E. Chitorkin, N. P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal. Math. Phys., 13:5 (2023), 79  crossref
    7. N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Construction of asymptotics of solutions to the Sturm–Liouville differential equations in the class of oscillating coefficients”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:5 (2023), 253–257  mathnet  mathnet  crossref  crossref  mathscinet
    8. L. N. Valeeva, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville Differential Equations with Rapidly Oscillating Coefficients”, Math. Notes, 112:6 (2022), 1059–1064  mathnet  crossref  crossref
    9. N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Odd-Order Differential Equations with Oscillating Coefficients”, Math. Notes, 109:6 (2021), 980–985  mathnet  crossref  crossref  isi  elib
    10. D. A. Chechin, A. D. Baev, S. A. Shabrov, “Ob odnoi granichnoi zadache s razryvnymi resheniyami i silnoi nelineinostyu”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 153–157  mathnet  crossref  elib
    11. N. P. Bondarenko, “Solving an inverse problem for the Sturm-Liouville operator with singular potential by Yurko's method”, Tamkang J. Math., 52:1, SI (2021), 125–154  crossref  mathscinet  isi
    12. K. A. Mirzoev, N. N. Konechnaja, “Asymptotics of solutions to linear differential equations of odd order”, Moscow University Mathematics Bulletin, 75:1 (2020), 22–26  mathnet  crossref  mathscinet  zmath  isi
    13. Ch. Gao, M. Ran, “Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition”, AIMS Math., 5:2 (2020), 904–922  crossref  mathscinet  isi
    14. A. D. Baev, D. A. Chechin, M. B. Zvereva, S. A. Shabrov, “Stieltjes differential in impulse nonlinear problems”, Dokl. Math., 101:1 (2020), 5–8  mathnet  crossref  crossref  zmath  elib
    15. M. Yu. Ignatiev, “OnWeyl-type Solutions of Differential Systems with a Singularity. The Case of Discontinuous Potential”, Math. Notes, 108:6 (2020), 814–826  mathnet  mathnet  crossref  mathscinet  isi  scopus
    16. N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Math. Notes, 106:1 (2019), 81–88  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:671
    Full-text PDF :107
    References:86
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025