Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 222–240
DOI: https://doi.org/10.4213/mzm12130
(Mi mzm12130)
 

This article is cited in 2 scientific papers (total in 2 papers)

Some Problems Related to Completely Monotone Positive Definite Functions

V. P. Zastavnyi

Donetsk National University
Full-text PDF (593 kB) Citations (2)
References:
Abstract: This paper deals with several problems related to functions of the class ${\mathcal{CM}}$ of completely monotone functions and functions of the class $\Phi(E)$ of positive definite functions on a real linear space $E$. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function $x^{-\mu}(x^2+1)^{-\nu}$. Theorem 2 states that if $f\in C^{\infty}{(0,+\infty)}$ and $\delta\in{\mathbb{R}}$, then
$$ f(x)-a^\delta f(a x)\in {\mathcal{CM}}\qquad \text{for all}\quad a>1 $$
if and only if $-\delta f(x)-xf'(x)\in \mathcal{CM}$. A similar result for functions in $\Phi(E)$ is obtained in Theorem 9: if $\varepsilon\in{\mathbb{R}}$ and a function $h\colon [0,+\infty)\to\mathbb{R}$ is continuous on $[0,+\infty)$ and differentiable on the interval $(0,+\infty)$ and satisfies the condition $xh'(x)\to 0$ as ${x\to+0}$, then
$$ h(\rho(u))-a^{-\varepsilon}h(a\rho(u))\in\Phi(E)\qquad \text{for all}\quad a>1 $$
if and only if $ \psi_{\varepsilon}(\rho(u))\in\Phi(E), $ where $\psi_{\varepsilon}(x):=\varepsilon h(x)- xh'(x)$ for $x>0$ and $\psi_{\varepsilon}(0):=\varepsilon h(0)$. Here $\rho$ is a nonnegative homogeneous function on $E$ and $\rho(u)\not\equiv 0$. It is proved (Example 6) that:
  • $e^{-\alpha\|u\|}(1-\beta\|u\|)\in\Phi(\mathbb{R}^m)$ if and only if $-\alpha\le\beta\le\alpha/m$;
  • $e^{-\alpha\|u\|^2}(1-\beta\|u\|^2)\in\Phi({\mathbb{R}}^m)$ if and only if $0\le\beta\le2\alpha/m$.
Here $\|u\|$ is the Euclidean norm on $\mathbb{R}^m$. Theorem 11 deals with the case of radial positive definite functions $h_{\mu,\nu}$.
Keywords: completely monotone functions, positive definite functions, Hausdorff–Bernstein–Widder theorem, Fourier transform, Bochner–Khinchine theorem.
Received: 10.07.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 212–228
DOI: https://doi.org/10.1134/S0001434619070253
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, “Some Problems Related to Completely Monotone Positive Definite Functions”, Mat. Zametki, 106:2 (2019), 222–240; Math. Notes, 106:2 (2019), 212–228
Citation in format AMSBIB
\Bibitem{Zas19}
\by V.~P.~Zastavnyi
\paper Some Problems Related to Completely Monotone Positive Definite Functions
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 222--240
\mathnet{http://mi.mathnet.ru/mzm12130}
\crossref{https://doi.org/10.4213/mzm12130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985702}
\elib{https://elibrary.ru/item.asp?id=38590317}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 212--228
\crossref{https://doi.org/10.1134/S0001434619070253}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071616366}
Linking options:
  • https://www.mathnet.ru/eng/mzm12130
  • https://doi.org/10.4213/mzm12130
  • https://www.mathnet.ru/eng/mzm/v106/i2/p222
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024