Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 3, Pages 467–480
DOI: https://doi.org/10.4213/mzm12118
(Mi mzm12118)
 

This article is cited in 4 scientific papers (total in 4 papers)

Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on Rn

S. M. Umarkhadzhievab

a Academy of Sciences of Chechen Republic
b Complex Research Institute named after Kh. I. Ibragimov, Russian Academy of Sciences, Groznyi
Full-text PDF (562 kB) Citations (4)
References:
Abstract: The Riesz potentials Iαf, 0<α<, are considered in the framework of a grand Lebesgue space Lp),θa, 1<p<, θ>0, on Rn with grandizers aL1(Rn), which are understood in the case αn/p in terms of distributions on test functions in the Lizorkin space. The images under Iα of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace.
Keywords: Riesz potential, space of Riesz potentials, hypersingular integral, grand Lebesgue space, grandizer, Lizorkin space of test functions, identity approximation.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00094-A
17-301-50023-мол-нр
This work was supported by the Russian Foundation for Basic Research under grants 17-301-50023-mol-nr and 18-01-00094-A.
Received: 30.11.2017
English version:
Mathematical Notes, 2018, Volume 104, Issue 3, Pages 454–464
DOI: https://doi.org/10.1134/S0001434618090134
Bibliographic databases:
Document Type: Article
UDC: 517.982+517.983
Language: Russian
Citation: S. M. Umarkhadzhiev, “Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on Rn”, Mat. Zametki, 104:3 (2018), 467–480; Math. Notes, 104:3 (2018), 454–464
Citation in format AMSBIB
\Bibitem{Uma18}
\by S.~M.~Umarkhadzhiev
\paper Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 3
\pages 467--480
\mathnet{http://mi.mathnet.ru/mzm12118}
\crossref{https://doi.org/10.4213/mzm12118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849095}
\elib{https://elibrary.ru/item.asp?id=35410205}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 3
\pages 454--464
\crossref{https://doi.org/10.1134/S0001434618090134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451315200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056749416}
Linking options:
  • https://www.mathnet.ru/eng/mzm12118
  • https://doi.org/10.4213/mzm12118
  • https://www.mathnet.ru/eng/mzm/v104/i3/p467
  • This publication is cited in the following 4 articles:
    1. Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, Stefan Samko, Operator Theory: Advances and Applications, 298, Integral Operators in Non-Standard Function Spaces, 2024, 391  crossref
    2. Salaudin Umarkhadzhiev, “GRAND LEBESGUE SPACES ON SETS OF INFINITE MEASURE: OVERVIEW 1”, J Math Sci, 2024  crossref
    3. H. Rafeiro, S. Samko, S. Umarkhadzhiev, “Grand Lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators”, Anal. Math., 49:4 (2023), 1087  crossref  mathscinet
    4. S. M. Umarkhadzhiev, “On elliptic homogeneous differential operators in grand spaces”, Russian Math. (Iz. VUZ), 64:3 (2020), 57–65  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :80
    References:69
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025