Abstract:
The Riesz potentials Iαf, 0<α<∞, are considered in the framework of a grand Lebesgue space Lp),θa, 1<p<∞, θ>0, on Rn with grandizers a∈L1(Rn), which are understood in the case α⩾n/p in terms of distributions on test functions in the Lizorkin space. The images under Iα of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order α in this subspace.
Keywords:
Riesz potential, space of Riesz potentials, hypersingular integral, grand Lebesgue space, grandizer, Lizorkin space of test functions, identity approximation.
Citation:
S. M. Umarkhadzhiev, “Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on Rn”, Mat. Zametki, 104:3 (2018), 467–480; Math. Notes, 104:3 (2018), 454–464
\Bibitem{Uma18}
\by S.~M.~Umarkhadzhiev
\paper Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 3
\pages 467--480
\mathnet{http://mi.mathnet.ru/mzm12118}
\crossref{https://doi.org/10.4213/mzm12118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849095}
\elib{https://elibrary.ru/item.asp?id=35410205}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 3
\pages 454--464
\crossref{https://doi.org/10.1134/S0001434618090134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451315200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056749416}
Linking options:
https://www.mathnet.ru/eng/mzm12118
https://doi.org/10.4213/mzm12118
https://www.mathnet.ru/eng/mzm/v104/i3/p467
This publication is cited in the following 4 articles:
Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, Stefan Samko, Operator Theory: Advances and Applications, 298, Integral Operators in Non-Standard Function Spaces, 2024, 391
Salaudin Umarkhadzhiev, “GRAND LEBESGUE SPACES ON SETS OF INFINITE MEASURE: OVERVIEW 1”, J Math Sci, 2024
H. Rafeiro, S. Samko, S. Umarkhadzhiev, “Grand Lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators”, Anal. Math., 49:4 (2023), 1087
S. M. Umarkhadzhiev, “On elliptic homogeneous differential operators in grand spaces”, Russian Math. (Iz. VUZ), 64:3 (2020), 57–65