Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 6, Pages 835–850
DOI: https://doi.org/10.4213/mzm12093
(Mi mzm12093)
 

This article is cited in 14 scientific papers (total in 14 papers)

Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials

S. Yu. Dobrokhotovab, A. V. Tsvetkovaab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: We discuss two approaches that can be used to obtain the asymptotics of Hermite polynomials. The first, well-known approach is based on the representation of Hermite polynomials as solutions of a spectral problem for the harmonic oscillator Schrödinger equation. The second approach is based on a reduction of the finite-difference equation for the Hermite polynomials to a pseudodifferential equation. Associated with each of the approaches are Lagrangian manifolds that give the asymptotics of Hermite polynomials via the Maslov canonical operator.
Keywords: Hermite polynomial, Lagrangian manifold, Maslov canonical operator, asymptotics, finite-difference equation, Schrödinger equation.
Funding agency Grant number
Russian Science Foundation 16-11-10282
This work was supported by the Russian Science Foundation under grant 16-11-10282.
Received: 14.06.2018
English version:
Mathematical Notes, 2018, Volume 104, Issue 6, Pages 810–822
DOI: https://doi.org/10.1134/S0001434618110263
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: S. Yu. Dobrokhotov, A. V. Tsvetkova, “Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials”, Mat. Zametki, 104:6 (2018), 835–850; Math. Notes, 104:6 (2018), 810–822
Citation in format AMSBIB
\Bibitem{DobTsv18}
\by S.~Yu.~Dobrokhotov, A.~V.~Tsvetkova
\paper Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 6
\pages 835--850
\mathnet{http://mi.mathnet.ru/mzm12093}
\crossref{https://doi.org/10.4213/mzm12093}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881775}
\elib{https://elibrary.ru/item.asp?id=36448723}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 6
\pages 810--822
\crossref{https://doi.org/10.1134/S0001434618110263}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454546800026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059235880}
Linking options:
  • https://www.mathnet.ru/eng/mzm12093
  • https://doi.org/10.4213/mzm12093
  • https://www.mathnet.ru/eng/mzm/v104/i6/p835
  • This publication is cited in the following 14 articles:
    1. A. A. Fedotov, “Complex WKB method (one-dimensional linear problems on the complex plane)”, Math Notes, 114:5-6 (2023), 1418  crossref
    2. S. Yu. Dobrokhotov, A. V. Tsvetkova, “Global asymptotics for functions of parabolic cylinder and solutions of the Schrödinger equation with a potential in the form of a nonsmooth double well”, Russ. J. Math. Phys., 30:1 (2023), 46  crossref  mathscinet
    3. A. Fedotov, E. Shchetka, “Difference equations in the complex plane: quasiclassical asymptotics and Berry phase”, Appl. Anal., 101:1 (2022), 274–296  crossref  mathscinet  isi
    4. A. I. Aptekarev, S. Yu. Dobrokhotov, D. N. Tulyakov, A. V. Tsvetkova, “Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations”, Izv. Math., 86:1 (2022), 32–91  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Fedotov A., Klopp F., “Wkb Asymptotics of Meromorphic Solutions to Difference Equations”, Appl. Anal., 100:7 (2021), 1557–1573  crossref  mathscinet  isi
    6. S. Yu. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii, “Representations of Bessel functions via the Maslov canonical operator”, Theoret. and Math. Phys., 208:2 (2021), 1018–1037  mathnet  crossref  crossref  adsnasa  isi  elib
    7. S. Yu. Dobrokhotov, A. V. Tsvetkova, “Asymptotics of multiple orthogonal Hermite polynomials (Z, alpha) determined by a third-order differential equation”, Russ. J. Math. Phys., 28:4 (2021), 439–454  crossref  mathscinet  isi
    8. S. Yu. Dobrokhotov, A. V. Tsvetkova, “An approach to finding the asymptotics of polynomials given by recurrence relations”, Russ. J. Math. Phys., 28:2 (2021), 198–223  crossref  mathscinet  isi
    9. A. A. Fedotov, “The complex WKB method for a system of two linear difference equations”, St. Petersburg Math. J., 33:2 (2022), 405–425  mathnet  crossref
    10. A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova, “Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states”, Theoret. and Math. Phys., 204:2 (2020), 984–992  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. I. Klevin, “Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential”, Theoret. and Math. Phys., 199:3 (2019), 849–863  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. A. Fedotov, F. Klopp, “The complex wkb method for difference equations and airy functions”, SIAM J. Math. Anal., 51:6 (2019), 4413–4447  crossref  mathscinet  zmath  isi  scopus
    13. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552  crossref  mathscinet  zmath  isi
    14. A. Fedotov, F. Klopp, “Difference equations, uniform quasiclassical asymptotics and Airy functions”, 2018 Days on Diffraction (DD), International Conference on Days on Diffraction (DD) (June 04–08, 2018, St, Petersburg, Russia), IEEE, 2018, 98–101  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:533
    Full-text PDF :107
    References:91
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025