Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 6, Pages 803–810
DOI: https://doi.org/10.4213/mzm12059
(Mi mzm12059)
 

This article is cited in 3 scientific papers (total in 3 papers)

Generalized Localization Principle for Continuous Wavelet Decompositions

R. R. Ashurov, Yu. È. Fayziev

National University of Uzbekistan named after M. Ulugbek
Full-text PDF (515 kB) Citations (3)
References:
Abstract: Spherically symmetric continuous wavelet decompositions are considered, and the notion of Riesz means is introduced for them. Generalized localization is proved for the decompositions under study in $L_p$ classes without any restrictions on the wavelets. Further, generalized localization is studied for the Riesz means of wavelet decompositions of distributions from the Sobolev class with negative order of smoothness.
Keywords: spherically symmetric wavelet decompositions, Riesz means, generalized localization.
Received: 04.05.2018
Revised: 08.01.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 6, Pages 857–863
DOI: https://doi.org/10.1134/S0001434619110208
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: R. R. Ashurov, Yu. È. Fayziev, “Generalized Localization Principle for Continuous Wavelet Decompositions”, Mat. Zametki, 106:6 (2019), 803–810; Math. Notes, 106:6 (2019), 857–863
Citation in format AMSBIB
\Bibitem{AshFay19}
\by R.~R.~Ashurov, Yu.~\`E.~Fayziev
\paper Generalized Localization Principle for Continuous Wavelet Decompositions
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 6
\pages 803--810
\mathnet{http://mi.mathnet.ru/mzm12059}
\crossref{https://doi.org/10.4213/mzm12059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045666}
\elib{https://elibrary.ru/item.asp?id=43221903}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 6
\pages 857--863
\crossref{https://doi.org/10.1134/S0001434619110208}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504614300020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077048455}
Linking options:
  • https://www.mathnet.ru/eng/mzm12059
  • https://doi.org/10.4213/mzm12059
  • https://www.mathnet.ru/eng/mzm/v106/i6/p803
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :44
    References:33
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024