Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 1, Pages 59–73
DOI: https://doi.org/10.4213/mzm12053
(Mi mzm12053)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a Multilinear Functional Equation

A. A. Illarionovab

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
b Pacific National University, Khabarovsk
Full-text PDF (571 kB) Citations (1)
References:
Abstract: The following functional equation is solved:
$$ f(x_1+z)\dotsb f(x_2+z)f(x_1+\dotsb+x_{s-1}-z) =\phi_1(x)\psi_1(z)+\dotsb+\phi_m(x)\psi_m(z), $$
where $x=(x_1,\dots,x_{s-1})$, for the unknowns $f,\psi_j\colon\mathbb C\to\mathbb C$ and $\phi_j\colon\mathbb C^{s-1}\to\mathbb C$ for $s\ge 3$ and $m\le 4s-5$.
Keywords: functional equation, theta function, Weierstrass sigma function, elliptic function, addition theorems, multilinear functional-differential operators.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00638
This work was supported by the Russian Foundation for Basic Research under grant 18-01-00638.
Received: 24.04.2018
Revised: 05.09.2018
English version:
Mathematical Notes, 2020, Volume 107, Issue 1, Pages 80–92
DOI: https://doi.org/10.1134/S0001434620010083
Bibliographic databases:
Document Type: Article
UDC: 517.968+517.583
Language: Russian
Citation: A. A. Illarionov, “On a Multilinear Functional Equation”, Mat. Zametki, 107:1 (2020), 59–73; Math. Notes, 107:1 (2020), 80–92
Citation in format AMSBIB
\Bibitem{Ill20}
\by A.~A.~Illarionov
\paper On a Multilinear Functional Equation
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 1
\pages 59--73
\mathnet{http://mi.mathnet.ru/mzm12053}
\crossref{https://doi.org/10.4213/mzm12053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045687}
\elib{https://elibrary.ru/item.asp?id=43257842}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 1
\pages 80--92
\crossref{https://doi.org/10.1134/S0001434620010083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519555100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081003612}
Linking options:
  • https://www.mathnet.ru/eng/mzm12053
  • https://doi.org/10.4213/mzm12053
  • https://www.mathnet.ru/eng/mzm/v107/i1/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :59
    References:42
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024