Abstract:
For the classes of functions
Wr(ωM,Φ):={f∈Lr2(R):ωM(f(r),t)⩽Φ(t)∀t∈(0,∞)},
where Φ is a majorant and r∈Z+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(R) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Keywords:
mean dimension, mean ν-width, majorant, entire function of exponential type, generalized modulus of continuity.
Citation:
S. B. Vakarchuk, “On Estimates in L2(R) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωM”, Mat. Zametki, 106:2 (2019), 198–211; Math. Notes, 106:2 (2019), 191–202
S. Vakarchuk, M. Vakarchuk, “Nablizhennya v serednomu sumami Fur'є–Besselya klasіv funktsіi u prostorі L2 0,1);x] ta otsіnki znachen {\i}kh n-poperechnikіv”, Ukr. Mat. Zhurn., 76:2 (2024), 198
Sergii Vakarchuk, Mykhailo Vakarchuk, “Approximation in the Mean for the Classes Of Functions in the Space L2[(0, 1); x] by The Fourier–Bessel Sums And Estimation of the Values of Their n-Widths”, Ukr Math J, 76:2 (2024), 214
S. B. Vakarchuk, “Estimates of the Values of n-Widths of Classes of Analytic Functions in the Weight Spaces H2,γ(D)”, Math. Notes, 108:6 (2020), 775–790
Sergey B. Vakarchuk, Mihail B. Vakarchuk, “On the estimates of the values of various widths of classes of functions of two variables in the weight space L2,γ (ℝ2), γ = exp(- x2- y2)”, J Math Sci, 248:2 (2020), 217