Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 198–211
DOI: https://doi.org/10.4213/mzm12051
(Mi mzm12051)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$

S. B. Vakarchuk

Alfred Nobel University Dnepropetrovsk
Full-text PDF (567 kB) Citations (4)
References:
Abstract: For the classes of functions
$$ W^r(\omega_{\mathcal{M}},\Phi):=\{f \in L^r_2(\mathbb{R}): \omega_{\mathcal{M}}(f^{(r)},t) \le \Phi(t) \ \forall\,t \in (0,\infty)\}, $$
where $\Phi$ is a majorant and $r \in \mathbb{Z}_{+}$, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean $\nu$-widths in the space $L_2(\mathbb{R})$ are obtained. A condition on the majorant $\Phi$ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Keywords: mean dimension, mean $\nu$-width, majorant, entire function of exponential type, generalized modulus of continuity.
Received: 22.04.2018
Revised: 09.09.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 191–202
DOI: https://doi.org/10.1134/S000143461907023X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, “On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$”, Mat. Zametki, 106:2 (2019), 198–211; Math. Notes, 106:2 (2019), 191–202
Citation in format AMSBIB
\Bibitem{Vak19}
\by S.~B.~Vakarchuk
\paper On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 198--211
\mathnet{http://mi.mathnet.ru/mzm12051}
\crossref{https://doi.org/10.4213/mzm12051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985700}
\elib{https://elibrary.ru/item.asp?id=38590315}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 191--202
\crossref{https://doi.org/10.1134/S000143461907023X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071611975}
Linking options:
  • https://www.mathnet.ru/eng/mzm12051
  • https://doi.org/10.4213/mzm12051
  • https://www.mathnet.ru/eng/mzm/v106/i2/p198
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :37
    References:55
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024