|
This article is cited in 4 scientific papers (total in 4 papers)
On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$
S. B. Vakarchuk Alfred Nobel University Dnepropetrovsk
Abstract:
For the classes of functions
$$
W^r(\omega_{\mathcal{M}},\Phi):=\{f \in L^r_2(\mathbb{R}): \omega_{\mathcal{M}}(f^{(r)},t) \le \Phi(t) \ \forall\,t \in (0,\infty)\},
$$
where $\Phi$ is a majorant and $r \in \mathbb{Z}_{+}$, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean $\nu$-widths in the space $L_2(\mathbb{R})$ are obtained. A condition on the majorant $\Phi$ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Keywords:
mean dimension, mean $\nu$-width, majorant, entire function of exponential type, generalized modulus of continuity.
Received: 22.04.2018 Revised: 09.09.2018
Citation:
S. B. Vakarchuk, “On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$”, Mat. Zametki, 106:2 (2019), 198–211; Math. Notes, 106:2 (2019), 191–202
Linking options:
https://www.mathnet.ru/eng/mzm12051https://doi.org/10.4213/mzm12051 https://www.mathnet.ru/eng/mzm/v106/i2/p198
|
|