Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 198–211
DOI: https://doi.org/10.4213/mzm12051
(Mi mzm12051)
 

This article is cited in 5 scientific papers (total in 5 papers)

On Estimates in L2(R) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωM

S. B. Vakarchuk

Alfred Nobel University Dnepropetrovsk
Full-text PDF (567 kB) Citations (5)
References:
Abstract: For the classes of functions
Wr(ωM,Φ):={fLr2(R):ωM(f(r),t)Φ(t) t(0,)},
where Φ is a majorant and rZ+, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean ν-widths in the space L2(R) are obtained. A condition on the majorant Φ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.
Keywords: mean dimension, mean ν-width, majorant, entire function of exponential type, generalized modulus of continuity.
Received: 22.04.2018
Revised: 09.09.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 191–202
DOI: https://doi.org/10.1134/S000143461907023X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, “On Estimates in L2(R) of Mean ν-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of ωM”, Mat. Zametki, 106:2 (2019), 198–211; Math. Notes, 106:2 (2019), 191–202
Citation in format AMSBIB
\Bibitem{Vak19}
\by S.~B.~Vakarchuk
\paper On Estimates in~$L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of~$\omega_{\mathcal{M}}$
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 198--211
\mathnet{http://mi.mathnet.ru/mzm12051}
\crossref{https://doi.org/10.4213/mzm12051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985700}
\elib{https://elibrary.ru/item.asp?id=38590315}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 191--202
\crossref{https://doi.org/10.1134/S000143461907023X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071611975}
Linking options:
  • https://www.mathnet.ru/eng/mzm12051
  • https://doi.org/10.4213/mzm12051
  • https://www.mathnet.ru/eng/mzm/v106/i2/p198
  • This publication is cited in the following 5 articles:
    1. Sergіi Vakarchuk, Valentina Zabutna, Mikhailo Vakarchuk, “Userednenі kharakteristiki gladkostі v L2 ta otsіnki znachen poperechnikіv funktsіonalnikh klasіv”, Ukr. Mat. Zhurn., 77:2 (2025), 83  crossref
    2. S. Vakarchuk, M. Vakarchuk, “Nablizhennya v serednomu sumami Fur'є–Besselya klasіv funktsіi u prostorі L2 0,1);x] ta otsіnki znachen {\i}kh n-poperechnikіv”, Ukr. Mat. Zhurn., 76:2 (2024), 198  crossref
    3. Sergii Vakarchuk, Mykhailo Vakarchuk, “Approximation in the Mean for the Classes Of Functions in the Space L2[(0, 1); x] by The Fourier–Bessel Sums And Estimation of the Values of Their n-Widths”, Ukr Math J, 76:2 (2024), 214  crossref
    4. S. B. Vakarchuk, “Estimates of the Values of n-Widths of Classes of Analytic Functions in the Weight Spaces H2,γ(D)”, Math. Notes, 108:6 (2020), 775–790  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Sergey B. Vakarchuk, Mihail B. Vakarchuk, “On the estimates of the values of various widths of classes of functions of two variables in the weight space L2,γ (ℝ2), γ = exp(- x2- y2)”, J Math Sci, 248:2 (2020), 217  crossref  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :41
    References:65
    First page:24
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025