Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 3, paper published in the English version journal (Mi mzm12028)  

This article is cited in 7 scientific papers (total in 7 papers)

Papers published in the English version of the journal

A Note on Campanato Spaces and Their Applications

D. H. Wang, J. Zhou, Z. H. Teng

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Republic of China
Citations (7)
Abstract: In this paper, we obtain a version of the John–Nirenberg inequality suitable for Campanato spaces $\mathcal{C}_{p,\beta}$ with $0<p<1$ and show that the spaces $\mathcal{C}_{p,\beta}$ are independent of the scale $p\in (0,\infty)$ in sense of norm when $0<\beta<1$. As an application, we characterize these spaces by the boundedness of the commutators $[b,B_{\alpha}]_{j}$ $(j=1,2)$ generated by bilinear fractional integral operators $B_{\alpha}$ and the symbol $b$ acting from $L^{p_{1}}\times L^{p_{2}}$ to $L^{q}$ for $p_{1},p_{2}\in(1,\infty), q\in (0,\infty)$ and $1/q=1/p_{1}+1/p_{2}-(\alpha+ \beta)/n$.
Keywords: bilinear fractional integral operator, Campanato spaces, characterization, commutators, John–Nirenberg inequality.
Funding agency Grant number
National Natural Science Foundation of China 11661075
11271312
The research was supported by the National Natural Science Foundation of China under grants 11661075 and 11271312.
Received: 10.05.2017
Revised: 08.08.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 3, Pages 483–489
DOI: https://doi.org/10.1134/S0001434618030148
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. H. Wang, J. Zhou, Z. H. Teng, “A Note on Campanato Spaces and Their Applications”, Math. Notes, 103:3 (2018), 483–489
Citation in format AMSBIB
\Bibitem{WanZhoTen18}
\by D.~H.~Wang, J.~Zhou, Z.~H.~Teng
\paper A Note on Campanato Spaces and Their Applications
\jour Math. Notes
\yr 2018
\vol 103
\issue 3
\pages 483--489
\mathnet{http://mi.mathnet.ru/mzm12028}
\crossref{https://doi.org/10.1134/S0001434618030148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046367555}
Linking options:
  • https://www.mathnet.ru/eng/mzm12028
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:164
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024