Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 5, paper published in the English version journal
DOI: https://doi.org/10.1134/S0001434618050139
(Mi mzm12018)
 

This article is cited in 15 scientific papers (total in 15 papers)

Papers published in the English version of the journal

The Jordan Property for Lie Groups and Automorphism Groups of Complex Spaces

V. L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Citations (15)
Abstract: We prove that the family of all connected $n$-dimensional real Lie groups is uniformly Jordan for every $n$. This implies that all algebraic (not necessarily affine) groups over fields of characteristic zero and some transformation groups of complex spaces and Riemannian manifolds are Jordan.
Keywords: Jordan group, bounded group, Lie group, algebraic group, automorphism group of complex space, isometry group of Riemannian manifold.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was carried out at the Steklov Mathematical Institute and supported by the Russian Science Foundation under grant 14-50-00005.
Received: 03.04.2018
English version:
Mathematical Notes, 2018, Volume 103, Issue 5, Pages 811–819
DOI: https://doi.org/10.1134/S0001434618050139
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. L. Popov, “The Jordan Property for Lie Groups and Automorphism Groups of Complex Spaces”, Math. Notes, 103:5 (2018), 811–819
Citation in format AMSBIB
\Bibitem{Pop18}
\by V.~L.~Popov
\paper The Jordan Property for Lie Groups
and Automorphism Groups of Complex Spaces
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 811--819
\mathnet{http://mi.mathnet.ru/mzm12018}
\crossref{https://doi.org/10.1134/S0001434618050139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3830471}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800013}
\elib{https://elibrary.ru/item.asp?id=35745550}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049137914}
Linking options:
  • https://www.mathnet.ru/eng/mzm12018
  • https://doi.org/10.1134/S0001434618050139
  • Related presentations:
    This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024