Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 6, Pages 837–847
DOI: https://doi.org/10.4213/mzm12013
(Mi mzm12013)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the Parametrization of an Algebraic Curve

A. D. Bruno

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Full-text PDF (646 kB) Citations (3)
References:
Abstract: At present, a plane algebraic curve can be parametrized in the following two cases: if its genus is equal to 0 or 1 and if it has a large group of birational automorphisms. Here we propose a new polyhedron method (involving a polyhedron called a Hadamard polyhedron by the author), which allows us to divide the space $\mathbb R^2$ or $\mathbb C^2$ into pieces in each of which the polynomial specifying the curve is sufficiently well approximated by its truncated polynomial, which often defines the parametrized curve. This approximate parametrization in a piece can be refined by means of the Newton method. Thus, an arbitrarily exact piecewise parametrization of the original curve can be obtained.
Keywords: algebraic curve, genus of a curve, piecewise parametrization, Hadamard polyhedron, Newton method.
Received: 29.03.2018
Revised: 23.01.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 6, Pages 885–893
DOI: https://doi.org/10.1134/S0001434619110233
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. D. Bruno, “On the Parametrization of an Algebraic Curve”, Mat. Zametki, 106:6 (2019), 837–847; Math. Notes, 106:6 (2019), 885–893
Citation in format AMSBIB
\Bibitem{Bru19}
\by A.~D.~Bruno
\paper On the Parametrization of an Algebraic Curve
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 6
\pages 837--847
\mathnet{http://mi.mathnet.ru/mzm12013}
\crossref{https://doi.org/10.4213/mzm12013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045669}
\elib{https://elibrary.ru/item.asp?id=43224381}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 6
\pages 885--893
\crossref{https://doi.org/10.1134/S0001434619110233}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504614300023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077027241}
Linking options:
  • https://www.mathnet.ru/eng/mzm12013
  • https://doi.org/10.4213/mzm12013
  • https://www.mathnet.ru/eng/mzm/v106/i6/p837
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :428
    References:43
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024