Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 6, Pages 853–862
DOI: https://doi.org/10.4213/mzm12006
(Mi mzm12006)
 

This article is cited in 4 scientific papers (total in 4 papers)

Linear Congruences in Continued Fractions on Finite Alphabets

I. D. Kan

Moscow Aviation Institute (National Research University)
Full-text PDF (501 kB) Citations (4)
References:
Abstract: A linear homogeneous congruence $ay\equiv bY \,(\operatorname{mod}{q})$ is considered and an order-sharp upper bound for the number of its solutions is proved. Here $a$$b$, and $q$ are given jointly coprime numbers and $y$ and $Y$ are coprime variables in a given closed interval such that the number $y/Y$ can be expanded in a continued fraction with partial quotients from some alphabet $\mathbf{A}\subseteq\mathbb{N}$. For $\mathbf{A}=\mathbb{N}$ (and without the assumption that $y$ and $Y$ are coprime), a similar problem was solved by N. M. Korobov.
Keywords: linear congruence, continued fraction.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05700 А
This work was supported by the Russian Foundation for Basic Research under grant 15-01-05700 A.
Received: 18.05.2017
Revised: 14.07.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 6, Pages 911–918
DOI: https://doi.org/10.1134/S0001434618050279
Bibliographic databases:
Document Type: Article
UDC: 511.321+511.31
Language: Russian
Citation: I. D. Kan, “Linear Congruences in Continued Fractions on Finite Alphabets”, Mat. Zametki, 103:6 (2018), 853–862; Math. Notes, 103:6 (2018), 911–918
Citation in format AMSBIB
\Bibitem{Kan18}
\by I.~D.~Kan
\paper Linear Congruences in Continued Fractions on Finite Alphabets
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 6
\pages 853--862
\mathnet{http://mi.mathnet.ru/mzm12006}
\crossref{https://doi.org/10.4213/mzm12006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807886}
\elib{https://elibrary.ru/item.asp?id=34940603}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 6
\pages 911--918
\crossref{https://doi.org/10.1134/S0001434618050279}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049130592}
Linking options:
  • https://www.mathnet.ru/eng/mzm12006
  • https://doi.org/10.4213/mzm12006
  • https://www.mathnet.ru/eng/mzm/v103/i6/p853
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :124
    References:38
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024