Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 4, Pages 549–567
DOI: https://doi.org/10.4213/mzm11989
(Mi mzm11989)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Groups $G_{n}^{2}$ with Additional Structures

Kim Seongjeong

Bauman Moscow State Technical University
Full-text PDF (668 kB) Citations (1)
References:
Abstract: In the paper [1], V. O. Manturov introduced the groups $G_{n}^{k}$ depending on two natural parameters $n>k$ and naturally related to topology and to the theory of dynamical systems. The group $G_{n}^{2}$, which is the simplest part of $G_{n}^{k}$, is isomorphic to the group of pure free braids on $n$ strands. In the present paper, we study the groups $G_{n}^{2}$ supplied with additional structures – parity and points; these groups are denoted by $G_{n,p}^{2}$ and $G_{n,d}^{2}$. First, we define the groups $G_{n,p}^{2}$ and $G_{n,d}^{2}$, then study the relationship between the groups $G_{n}^{2}$, $G_{n,p}^{2}$, and $G_{n,d}^{2}$. Finally, we give an example of a braid on $n+1$ strands, which is not the trivial braid on $n+1$ strands, by using a braid on $n$ strands with parity. After that, the author discusses links in $S_{g} \times S^{1}$ that can determine diagrams with points; these points correspond to the factor $S^{1}$ in the product $S_{g} \times S^{1}$.
Keywords: braids, free braids, knots, links, parity, braid groups with parity.
Received: 30.03.2016
Revised: 29.05.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 4, Pages 593–609
DOI: https://doi.org/10.1134/S0001434618030264
Bibliographic databases:
Document Type: Article
UDC: 515.14
Language: Russian
Citation: Kim Seongjeong, “The Groups $G_{n}^{2}$ with Additional Structures”, Mat. Zametki, 103:4 (2018), 549–567; Math. Notes, 103:4 (2018), 593–609
Citation in format AMSBIB
\Bibitem{Kim18}
\by Kim~Seongjeong
\paper The Groups~$G_{n}^{2}$ with Additional Structures
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 549--567
\mathnet{http://mi.mathnet.ru/mzm11989}
\crossref{https://doi.org/10.4213/mzm11989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780058}
\elib{https://elibrary.ru/item.asp?id=32641346}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 593--609
\crossref{https://doi.org/10.1134/S0001434618030264}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046360255}
Linking options:
  • https://www.mathnet.ru/eng/mzm11989
  • https://doi.org/10.4213/mzm11989
  • https://www.mathnet.ru/eng/mzm/v103/i4/p549
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024