Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 5, Pages 745–749
DOI: https://doi.org/10.4213/mzm11958
(Mi mzm11958)
 

This article is cited in 1 scientific paper (total in 1 paper)

Plane Partitions and Their Pedestal Polynomials

O. V. Ogievetskiiabc, S. B. Shlosmanade

a Aix-Marseille Université, CNRS, CPT UMR 7332, 13288 Marseille, France
b Kazan (Volga Region) Federal University
c P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
e Skolkovo Institute of Science and Technology
Full-text PDF (454 kB) Citations (1)
References:
Abstract: For a linear extension $P$ of a partially ordered set $\mathscr S$, we define a multivariate polynomial by counting certain reverse partitions on $\mathscr S$, called $P$-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of $P$. For $\mathscr S$ a Young diagram, we show that this polynomial generalizes the hook polynomial.
Keywords: Young diagram, hook polynomial, Schur functions.
Funding agency Grant number
Labex ANR-11-LABX-0033
University foundation AMIDEX ANR-11-IDEX-0001-02
Russian Science Foundation 14-50-00150
Russian Foundation for Basic Research 17-01-00585
Ministry of Education and Science of the Russian Federation
The work of S. B. Shlosman was performed in part at the Institute for Information Transmission Problems of Russian Academy of Sciences, carried out at the LabEx Archimede (ANR-11-LABX-0033) in the framework of the A*MIDEX project (ANR-11-IDEX-0001-02) financed by ANR, and supported by the Russian Foundation for Basic Research under grant 14-50-00150.
The work of O. V. Ogievetsky was supported by the Program of Competitive Growth of Kazan Federal University and by the Russian Foundation for Basic Research under grant 17-01-00585.
Received: 06.02.2018
English version:
Mathematical Notes, 2018, Volume 103, Issue 5, Pages 793–796
DOI: https://doi.org/10.1134/S0001434618050115
Bibliographic databases:
Document Type: Article
UDC: 512.6
Language: Russian
Citation: O. V. Ogievetskii, S. B. Shlosman, “Plane Partitions and Their Pedestal Polynomials”, Mat. Zametki, 103:5 (2018), 745–749; Math. Notes, 103:5 (2018), 793–796
Citation in format AMSBIB
\Bibitem{OgiShl18}
\by O.~V.~Ogievetskii, S.~B.~Shlosman
\paper Plane Partitions and Their Pedestal Polynomials
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 5
\pages 745--749
\mathnet{http://mi.mathnet.ru/mzm11958}
\crossref{https://doi.org/10.4213/mzm11958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795121}
\elib{https://elibrary.ru/item.asp?id=32823049}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 793--796
\crossref{https://doi.org/10.1134/S0001434618050115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049139738}
Linking options:
  • https://www.mathnet.ru/eng/mzm11958
  • https://doi.org/10.4213/mzm11958
  • https://www.mathnet.ru/eng/mzm/v103/i5/p745
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :40
    References:29
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024