Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 436–449
DOI: https://doi.org/10.4213/mzm11916
(Mi mzm11916)
 

This article is cited in 3 scientific papers (total in 3 papers)

Generalized Smoothness and Approximation of Periodic Functions in the Spaces $L_p$, $1<p<+\infty$

K. V. Runovskii

Lomonosov Moscow State University
Full-text PDF (550 kB) Citations (3)
References:
Abstract: Norms of images of operators of multiplier type with an arbitrary generator are estimated by using best approximations of periodic functions of one variable by trigonometric polynomials in the scale of the spaces $L_p$, $1<p<+\infty$. A Bernstein-type inequality for the generalized derivative of the trigonometric polynomial generated by an arbitrary generator $\psi$, sufficient constructive $\psi$-smoothness conditions, estimates of best approximations of $\psi$-derivatives, estimates of best approximations of $\psi$-smooth functions, and an inverse theorem of approximation theory for the generalized modulus of smoothness generated by an arbitrary periodic generator are obtained as corollaries.
Keywords: best approximation, modulus of smoothness, generalized derivative.
Received: 06.01.2018
Revised: 16.12.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 412–422
DOI: https://doi.org/10.1134/S0001434619090104
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: K. V. Runovskii, “Generalized Smoothness and Approximation of Periodic Functions in the Spaces $L_p$, $1<p<+\infty$”, Mat. Zametki, 106:3 (2019), 436–449; Math. Notes, 106:3 (2019), 412–422
Citation in format AMSBIB
\Bibitem{Run19}
\by K.~V.~Runovskii
\paper Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1<p<+\infty$
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 436--449
\mathnet{http://mi.mathnet.ru/mzm11916}
\crossref{https://doi.org/10.4213/mzm11916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017558}
\elib{https://elibrary.ru/item.asp?id=41704639}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 412--422
\crossref{https://doi.org/10.1134/S0001434619090104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074128439}
Linking options:
  • https://www.mathnet.ru/eng/mzm11916
  • https://doi.org/10.4213/mzm11916
  • https://www.mathnet.ru/eng/mzm/v106/i3/p436
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :55
    References:45
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024