Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 3, Pages 323–340
DOI: https://doi.org/10.4213/mzm11898
(Mi mzm11898)
 

The Extended Legendre Transform and Related Variational Principles

A. B. Antonevicha, E. U. Leonovab

a Belarusian State University
b HiQo Solutions, Inc., Minsk, Belarus
References:
Abstract: Variational principles for functionals on the space $C(X)$ of continuous functions that can be written as a representation of a functional in the form of the Legendre transform of the dual functional are considered. The formula of the Legendre transform determines a functional on wider sets of functions, and this functional is called the extended Legendre transform. Functionals that can be represented in the form of the extended Legendre transform are described. Applications to the problem of finding the spectral radius of functional operators are given.
Keywords: Legendre transform, variational principle, spectral radius.
Received: 18.12.2017
English version:
Mathematical Notes, 2020, Volume 107, Issue 3, Pages 369–382
DOI: https://doi.org/10.1134/S0001434620030013
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: Russian
Citation: A. B. Antonevich, E. U. Leonova, “The Extended Legendre Transform and Related Variational Principles”, Mat. Zametki, 107:3 (2020), 323–340; Math. Notes, 107:3 (2020), 369–382
Citation in format AMSBIB
\Bibitem{AntLeo20}
\by A.~B.~Antonevich, E.~U.~Leonova
\paper The Extended Legendre Transform and Related Variational Principles
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 3
\pages 323--340
\mathnet{http://mi.mathnet.ru/mzm11898}
\crossref{https://doi.org/10.4213/mzm11898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070855}
\elib{https://elibrary.ru/item.asp?id=42649812}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 369--382
\crossref{https://doi.org/10.1134/S0001434620030013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700001}
\elib{https://elibrary.ru/item.asp?id=43274337}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083853356}
Linking options:
  • https://www.mathnet.ru/eng/mzm11898
  • https://doi.org/10.4213/mzm11898
  • https://www.mathnet.ru/eng/mzm/v107/i3/p323
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :79
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024