Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 4, Pages 617–631
DOI: https://doi.org/10.4213/mzm11864
(Mi mzm11864)
 

This article is cited in 12 scientific papers (total in 12 papers)

Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space $L_2$ and $n$-Widths

M. Sh. Shabozova, M. S. Saidusajnovb

a Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
b Tajik National University, Dushanbe
References:
Abstract: We consider the problem of the mean-square approximation of complex functions regular in a domain $\mathscr D\subset\mathbb C$ by Fourier series with respect to an orthogonal (in $\mathscr D$) system of functions $\{\varphi_k(z)\}$, $k=0,1,2,\dots$ . For the case in which $\mathscr D=\{z\in\mathbb C:|z|<1\}$, we obtain sharp estimates for the rate of convergence of the Fourier series in the orthogonal system $\{z^k\}$, $k=0,1,2,\dots$, for classes of functions defined by a special $m$th-order modulus of continuity. Exact values of the series of $n$-widths for these classes of functions are calculated.
Keywords: Fourier sum, mean-square approximation, generalized modulus of continuity, Jackson–Stechkin inequality, upper bounds for best approximations, $n$-widths.
Received: 23.05.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 4, Pages 656–668
DOI: https://doi.org/10.1134/S0001434618030343
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, M. S. Saidusajnov, “Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space $L_2$ and $n$-Widths”, Mat. Zametki, 103:4 (2018), 617–631; Math. Notes, 103:4 (2018), 656–668
Citation in format AMSBIB
\Bibitem{ShaSai18}
\by M.~Sh.~Shabozov, M.~S.~Saidusajnov
\paper Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 617--631
\mathnet{http://mi.mathnet.ru/mzm11864}
\crossref{https://doi.org/10.4213/mzm11864}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780065}
\elib{https://elibrary.ru/item.asp?id=32641355}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 656--668
\crossref{https://doi.org/10.1134/S0001434618030343}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046351227}
Linking options:
  • https://www.mathnet.ru/eng/mzm11864
  • https://doi.org/10.4213/mzm11864
  • https://www.mathnet.ru/eng/mzm/v103/i4/p617
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024