|
This article is cited in 2 scientific papers (total in 2 papers)
One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions
S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab, A. V. Tsvetkovaab a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Abstract:
We consider integrals of the form
$$
I(x,h)=\frac{1}{(2\pi h)^{k/2}}\int_{\mathbb{R}^k} f\biggl(\frac{S(x,\theta)}{h}\,,x,\theta\biggr)\,d\theta,
$$
where $h$ is a small positive parameter and $S(x,\theta)$ and $f(\tau,x,\theta)$ are smooth functions of variables $\tau\in\mathbb{R}$, $x\in\mathbb{R}^n$, and $\theta\in\mathbb{R}^k$; moreover, $S(x,\theta)$ is real-valued and $f(\tau,x,\theta)$ rapidly decays as $|\tau|\to\infty$. We suggest an approach to the computation of the asymptotics of such integrals as $h\to0$ with the use of the abstract stationary phase method.
Keywords:
rapidly decaying function, integral, asymptotics, abstract stationary phase method.
Received: 13.11.2017
Citation:
S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions”, Mat. Zametki, 103:5 (2018), 680–692; Math. Notes, 103:5 (2018), 33–43
Linking options:
https://www.mathnet.ru/eng/mzm11860https://doi.org/10.4213/mzm11860 https://www.mathnet.ru/eng/mzm/v103/i5/p680
|
Statistics & downloads: |
Abstract page: | 444 | Full-text PDF : | 75 | References: | 59 | First page: | 30 |
|