Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 3, paper published in the English version journal (Mi mzm11848)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Multiplicity Results for the Biharmonic Equation with Singular Nonlinearity of Super Exponential Growth in $\mathbb{R}^4$

K. Saoudiab, M. Kratouab, E. Al Zahraniab

a Department of Mathematics, Imam Abdulrahman Bin Faisal University, Dammam, 31441 Kingdom of Saudi Arabia
b Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, 31441 Kingdom of Saudi Arabia
Citations (1)
Abstract: We consider the following elliptic problem of exponential-type growth posed in an open bounded domain with smooth boundary $B_1(0)\subset \mathbb{R}^4$:
\begin{align*} ( P_\lambda) \begin{cases} \Delta^2 u = \lambda (u^{-\delta}+h(u)e^{u^\alpha}), &\quad u>0\quad\text{in}\;B_1(0) , \\ \hphantom{\Delta^2}u=\Delta u = 0,&\quad\text{on}\;\partial B_1(0). \end{cases} \end{align*}
\noindent Here $\Delta^2 (\,\cdot\,) := -\Delta(-\Delta)(\,\cdot\,)$ denotes the biharmonic operator, $1<\alpha\leq 2$, $0<\delta<1$, $\lambda> 0$, and $h(t)$ is assumed to be a smooth “perturbation” of $e^{t^{\alpha}}$ as $t \to \infty$ (see (H1)–(H4) below). We employ variational methods in order to show the existence of at least two distinct (positive) solutions to the problem $(P_\lambda)$ in $H^2\cap H^1_0(B_1(0))$.
Keywords: biharmonic equation, multiple solutions, super exponential growth, Dirichlet boundary conditions.
Funding agency Grant number
Research Center, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University
This work was supported by the Research Center, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University.
Received: 03.11.2017
Revised: 03.11.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 3, Pages 404–424
DOI: https://doi.org/10.1134/S0001434619030118
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Saoudi, M. Kratou, E. Al Zahrani, “Multiplicity Results for the Biharmonic Equation with Singular Nonlinearity of Super Exponential Growth in $\mathbb{R}^4$”, Math. Notes, 105:3 (2019), 404–424
Citation in format AMSBIB
\Bibitem{SaoKraAl 19}
\by K.~Saoudi, M.~Kratou, E.~Al Zahrani
\paper Multiplicity Results for the Biharmonic Equation
with Singular Nonlinearity of Super Exponential Growth in
$\mathbb{R}^4$
\jour Math. Notes
\yr 2019
\vol 105
\issue 3
\pages 404--424
\mathnet{http://mi.mathnet.ru/mzm11848}
\crossref{https://doi.org/10.1134/S0001434619030118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954796}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467561600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065736646}
Linking options:
  • https://www.mathnet.ru/eng/mzm11848
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024