Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 4, Pages 576–581
DOI: https://doi.org/10.4213/mzm11843
(Mi mzm11843)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Measure of the Set of Zeros of the Sum of a Nondegenerate Sine Series with Monotone Coefficients in the Closed Interval $[0,\pi]$

K. A. Oganesyan

Lomonosov Moscow State University
Full-text PDF (398 kB) Citations (3)
References:
Abstract: Nonzero sine series with monotone coefficients tending to zero are considered. It is shown that the measure of the set of those zeros of such a series which belong to $[0,\pi]$ cannot exceed $\pi/3$. Moreover, if this value is attained, then almost all zeros belong to the closed interval $[2\pi/3,\pi]$.
Keywords: sine series, monotone coefficients, zeros of a function, measure of a set.
Received: 30.10.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 4, Pages 621–625
DOI: https://doi.org/10.1134/S000143461803029X
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
Language: Russian
Citation: K. A. Oganesyan, “The Measure of the Set of Zeros of the Sum of a Nondegenerate Sine Series with Monotone Coefficients in the Closed Interval $[0,\pi]$”, Mat. Zametki, 103:4 (2018), 576–581; Math. Notes, 103:4 (2018), 621–625
Citation in format AMSBIB
\Bibitem{Oga18}
\by K.~A.~Oganesyan
\paper The Measure of the Set of Zeros of the Sum of a Nondegenerate Sine Series with Monotone Coefficients in the Closed Interval $[0,\pi]$
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 576--581
\mathnet{http://mi.mathnet.ru/mzm11843}
\crossref{https://doi.org/10.4213/mzm11843}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780060}
\elib{https://elibrary.ru/item.asp?id=32641348}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 621--625
\crossref{https://doi.org/10.1134/S000143461803029X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046351952}
Linking options:
  • https://www.mathnet.ru/eng/mzm11843
  • https://doi.org/10.4213/mzm11843
  • https://www.mathnet.ru/eng/mzm/v103/i4/p576
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:436
    Full-text PDF :63
    References:49
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024