Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 5, Pages 771–791
DOI: https://doi.org/10.4213/mzm11818
(Mi mzm11818)
 

Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring

G. D. Solomadin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: A smooth stably complex manifold is said to be totally tangentially/normally split if its stably tangential/normal bundle is isomorphic to a sum of complex line bundles. It is proved that each class of degree greater than 2 in the graded unitary cobordism ring contains a quasitoric totally tangentially and normally split manifold.
Keywords: complex cobordisms, quasitoric manifold, Bott tower, residues of binomial coefficients.
Funding agency Grant number
Russian Science Foundation 14-11-00414
This work was performed at Steklov Mathematical Institute of Russian Academy of Sciences and supported by the Russian Science Foundation under grant no. 14-11-00414.
Received: 04.10.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 5, Pages 763–780
DOI: https://doi.org/10.1134/S0001434619050134
Bibliographic databases:
Document Type: Article
UDC: 515.14+515.16
Language: Russian
Citation: G. D. Solomadin, “Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring”, Mat. Zametki, 105:5 (2019), 771–791; Math. Notes, 105:5 (2019), 763–780
Citation in format AMSBIB
\Bibitem{Sol19}
\by G.~D.~Solomadin
\paper Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 5
\pages 771--791
\mathnet{http://mi.mathnet.ru/mzm11818}
\crossref{https://doi.org/10.4213/mzm11818}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951596}
\elib{https://elibrary.ru/item.asp?id=37424230}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 5
\pages 763--780
\crossref{https://doi.org/10.1134/S0001434619050134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473246800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068174380}
Linking options:
  • https://www.mathnet.ru/eng/mzm11818
  • https://doi.org/10.4213/mzm11818
  • https://www.mathnet.ru/eng/mzm/v105/i5/p771
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :76
    References:38
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024