Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 3, paper published in the English version journal (Mi mzm11809)  

Papers published in the English version of the journal

An Internal Polya Inequality for $\mathbb{C}$-Convex Domains in $\mathbb{C}^{n}$

O. Günyüz, V. Zakharyuta

Sabanci University, Tuzla/Istanbul, 34956 Turkey
Abstract: Let $K\subset \mathbb{C}$ be a polynomially convex compact set, $f$ be a function analytic in a domain $\overline{\mathbb{C}}\setminus K$ with Taylor expansion $f(z) =\sum_{k=0}^{\infty }a_{k}/z^{k+1} $ at $\infty $, and $H_{i}(f) :=\det (a_{k+l}) _{k,l=0}^{i}$ be the related Hankel determinants. The classical Polya theorem [11] says that
$$ \limsup_{i\to \infty }\vert H_{i}(f) \vert ^{1/i^{2}}\leq d(K) , $$
where $d(K) $ is the transfinite diameter of $K$. The main result of this paper is a multivariate analog of the Polya inequality for a weighted Hankel-type determinant constructed from the Taylor series of a function analytic on a $\mathbb{C}$-convex (= strictly linearly convex) domain in $\mathbb{C}^{n}$.
Keywords: Polya inequality, transfinite diameter, $\mathbb{C}$-convexity.
Received: 27.09.2017
Revised: 28.01.2018
English version:
Mathematical Notes, 2019, Volume 105, Issue 3, Pages 351–358
DOI: https://doi.org/10.1134/S0001434619030052
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. Günyüz, V. Zakharyuta, “An Internal Polya Inequality for $\mathbb{C}$-Convex Domains in $\mathbb{C}^{n}$”, Math. Notes, 105:3 (2019), 351–358
Citation in format AMSBIB
\Bibitem{GunZak19}
\by O.~G\"uny\"uz, V.~Zakharyuta
\paper An Internal Polya Inequality for
$\mathbb{C}$-Convex Domains in
$\mathbb{C}^{n}$
\jour Math. Notes
\yr 2019
\vol 105
\issue 3
\pages 351--358
\mathnet{http://mi.mathnet.ru/mzm11809}
\crossref{https://doi.org/10.1134/S0001434619030052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954795}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467561600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065702463}
Linking options:
  • https://www.mathnet.ru/eng/mzm11809
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025