Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 3, Pages 364–374
DOI: https://doi.org/10.4213/mzm11804
(Mi mzm11804)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Bombieri Problem for Bounded Univalent Functions

V. G. Gordienkoa, D. V. Prokhorovab

a Saratov State University
b Petrozavodsk State University
Full-text PDF (456 kB) Citations (3)
References:
Abstract: Bombieri proposed to describe the structure of the sets of values of the initial coefficients of normalized conformal mappings of the disk in a neighborhood of the corner point corresponding to the Koebe function. The Bombieri numbers characterize the limit position of the support hyperplane passing through a critical corner point. In this paper, the Bombieri problem is studied for the class of bounded normalized conformal mappings of the disk, where the role of the Koebe function is played by the Pick function. The Bombieri numbers for a pair of two nontrivial initial coefficients are calculated.
Keywords: univalent function, Bombieri number, Koebe function, Pick function.
Funding agency Grant number
Russian Science Foundation 17-11-01229
The work of the second author was supported by the Russian Science Foundation under grant 17-11-01229.
Received: 20.09.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 3, Pages 342–350
DOI: https://doi.org/10.1134/S0001434619030040
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. G. Gordienko, D. V. Prokhorov, “The Bombieri Problem for Bounded Univalent Functions”, Mat. Zametki, 105:3 (2019), 364–374; Math. Notes, 105:3 (2019), 342–350
Citation in format AMSBIB
\Bibitem{GorPro19}
\by V.~G.~Gordienko, D.~V.~Prokhorov
\paper The Bombieri Problem for Bounded Univalent Functions
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 3
\pages 364--374
\mathnet{http://mi.mathnet.ru/mzm11804}
\crossref{https://doi.org/10.4213/mzm11804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920412}
\elib{https://elibrary.ru/item.asp?id=37045121}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 3
\pages 342--350
\crossref{https://doi.org/10.1134/S0001434619030040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467561600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065504840}
Linking options:
  • https://www.mathnet.ru/eng/mzm11804
  • https://doi.org/10.4213/mzm11804
  • https://www.mathnet.ru/eng/mzm/v105/i3/p364
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :62
    References:59
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024