Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 5, Pages 684–699
DOI: https://doi.org/10.4213/mzm11795
(Mi mzm11795)
 

This article is cited in 8 scientific papers (total in 8 papers)

Multipliers in Spaces of Bessel Potentials: The Case of Indices of Nonnegative Smoothness

A. A. Belyaev, A. A. Shkalikov

Lomonosov Moscow State University
Full-text PDF (579 kB) Citations (8)
References:
Abstract: The aim of the paper is to study spaces of multipliers acting from the Bessel potential space $H^s_p(\mathbb{R}^n)$ to the other Bessel potential space $H^t_q(\mathbb{R}^n)$. We obtain conditions ensuring the equivalence of uniform and standard multiplier norms on the space of multipliers
$$ M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]\qquad \text{for}\quad s,t \in \mathbb{R},\quad p,q > 1. $$
In the case
$$ p,q > 1,\qquad p \le q,\qquad s > \frac np,\qquad t \ge 0,\qquad s-\frac np \ge t-\frac nq, $$
the space $M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]$ can be described explicitly. Namely, we prove in this paper that the latter space coincides with the space $H^t_{q,\mathrm{unif}}(\mathbb{R}^n)$ of uniformly localized Bessel potentials introduced by Strichartz. It is also proved that if both smoothness indices $s$ and $t$ are nonnegative, then such a description is possible only for the given values of the indices.
Keywords: Bessel potential space, multiplier, Strichartz theorem, uniform localization principle.
Funding agency Grant number
Russian Science Foundation 17-11-01215
This work was supported by the Russian Science Foundation under grant 17-11-01215.
Received: 06.09.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 5, Pages 632–644
DOI: https://doi.org/10.1134/S0001434617110049
Bibliographic databases:
Document Type: Article
UDC: 517.518.23
Language: Russian
Citation: A. A. Belyaev, A. A. Shkalikov, “Multipliers in Spaces of Bessel Potentials: The Case of Indices of Nonnegative Smoothness”, Mat. Zametki, 102:5 (2017), 684–699; Math. Notes, 102:5 (2017), 632–644
Citation in format AMSBIB
\Bibitem{BelShk17}
\by A.~A.~Belyaev, A.~A.~Shkalikov
\paper Multipliers in Spaces of Bessel Potentials:
The Case of Indices of Nonnegative Smoothness
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 5
\pages 684--699
\mathnet{http://mi.mathnet.ru/mzm11795}
\crossref{https://doi.org/10.4213/mzm11795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716504}
\elib{https://elibrary.ru/item.asp?id=30512311}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 5
\pages 632--644
\crossref{https://doi.org/10.1134/S0001434617110049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039457462}
Linking options:
  • https://www.mathnet.ru/eng/mzm11795
  • https://doi.org/10.4213/mzm11795
  • https://www.mathnet.ru/eng/mzm/v102/i5/p684
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:610
    Full-text PDF :55
    References:74
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024